BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Optical and electronic properties"

Filter results by typing the first few letters
Now showing 1 - 5 of 5
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Analysis of strain fields in silicon nanocrystals
    (American Institute of Physics, 2009) Yilmaz, D. E.; Bulutay, C.; Çaǧın, T.
    Strain has a crucial effect on the optical and electronic properties of nanostructures. We calculate the atomistic strain distribution in silicon nanocrystals up to a diameter of 3.2 nm embedded in an amorphous silicon dioxide matrix. A seemingly conflicting picture arises when the strain field is expressed in terms of bond lengths versus volumetric strain. The strain profile in either case shows uniform behavior in the core, however, it becomes nonuniform within 2-3 Å distance to the nanocrystal surface: tensile for bond lengths whereas compressive for volumetric strain. We reconcile their coexistence by an atomistic strain analysis.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Effect of chalcogens on electronic and photophysical properties of vinylene-based diketopyrrolopyrrole copolymers
    (American Chemical Society, 2015) Dhar, J.; Mukhopadhay, T.; Yaacobi-Gross, N.; Anthopoulos, T. D.; Salzner, U.; Swaraj, S.; Patil, S.
    Three vinylene linked diketopyrrolopyrrole based donor−acceptor (D−A) copolymers have been synthesized with phenyl, thienyl, and selenyl units as donors. Optical and electronic properties were investigated with UV−vis absorption spectroscopy, cyclic voltammetry, near edge X-ray absorption spectroscopy, organic field effect transistor (OFET) measurements, and density functional theory (DFT) calculations. Optical and electrochemical band gaps decrease in the order phenyl, thienyl, and selenyl. Only phenyl-based polymers are nonplanar, but the main contributor to the larger band gap is electronic, not structural effects. Thienyl and selenyl polymers exhibit ambipolar charge transport but with higher hole than electron mobility. Experimental and theoretical results predict the selenyl system to have the best transport properties, but OFET measurements prove the thienyl system to be superior with p-channel mobility as high as 0.1 cm2 V−1 s −1.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Hybrid functional calculated optical and electronic structures of thin anatase TiO2 nanowires with organic dye adsorbates
    (Elsevier, 2015) Ünal, H.; Gunceler, D.; Gülseren, O.; Ellialtioğlu, Ş.; Mete, E.
    The electronic and optical properties of thin anatase TiO2 (1 0 1) and (0 0 1) nanowires have been investigated using the screened Coulomb hybrid density functional calculations. For the bare nanowires with sub-nanometer diameters, the calculated band gaps are larger relative to the bulk values due to size effects. The role of organic light harvesting sensitizers on the absorption characteristics of the anatase nanowires has been examined using the hybrid density functional method incorporating partial exact exchange with range separation. For the lowest lying excitations, directional charge redistribution of tetrahydroquinoline (C2-1) dye shows a remarkably different profile in comparison to a simple molecule which is chosen as the coumarin skeleton. The binding modes and the adsorption energies of C2-1 dye and coumarin core on the anatase nanowires have been studied including non-linear solvation effetcs. The calculated optical and electronic properties of the nanowires with these two different types of sensitizers have been interpreted in terms of their electron-hole generation, charge carrier injection and recombination characteristics.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Large-area (> 50 cm × 50 cm), freestanding, flexible, optical membranes of Cd-free nanocrystal quantum dots
    (IEEE, 2012) Mutlugün, Evren; Hernandez Martinez, Pedro L.; Eroğlu, Cüneyt; Coşkun, Yasemin; Erdem, Talha; Sharma, Vijay K.; Ünal, Emre; Panda, S. K.; Hickey, S. G.; Gaponik, N.; Eychmuller, A.; Demir, Hilmi Volkan
    Colloidal semiconductor quantum dots (QDs) have been extensively explored for numerous applications ranging from optoelectronics to biotechnology. This strong demand for the colloidal QDs arises because of their favorable optical and electronic properties. From the application points of view, QDs typically need to be used in their solid form, as opposed to their as-synthesized dispersion form. For immobilization of QDs and homogeneity of their films, various polymers have been used to host QDs within solid media. However, the integration of QDs into a polymeric medium is commonly complex, which requires a high level of understanding to provide optical quality. © 2012 IEEE.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Optical and electronic properties of orthorhombic and trigonal AXO3 (A=Cd, Zn; X=Sn, Ge): first principle calculation
    (Taylor and Francis Inc., 2016) Ozisik, H.; Simsek S.; Deligoz, E.; Mamedov, A. M.; Özbay, Ekmel
    Electronic structure and optical properties of the CdXO3 and ZnXO3 (X˭Ge, Sn) compounds have been investigated based on density functional theory. According to the predictive results, reveal that the CdXO3 and ZnXO3 would be candidates for a high performance lead free optical crystal, which will avoid the environmental toxicity problem of the lead-based materials.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback