Browsing by Subject "Open circuit voltage"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Amyloid-like peptide nanofiber templated titania nanostructures as dye sensitized solar cell anodic materials(Royal Society of Chemistry, 2013) Acar, H.; Garifullin, R.; Aygun, L. E.; Okyay, Ali Kemal; Güler, Mustafa O.One-dimensional titania nanostructures can serve as a support for light absorbing molecules and result in an improvement in the short circuit current (Jsc) and open circuit voltage (Voc) as a nanostructured and high-surface-area material in dye-sensitized solar cells. Here, self-assembled amyloid-like peptide nanofibers were exploited as an organic template for the growth of one-dimensional titania nanostructures. Nanostructured titania layers were utilized as anodic materials in dye sensitized solar cells (DSSCs). The photovoltaic performance of the DSSC devices was assessed and an enhancement in the overall cell performance compared to unstructured titania was observed.Item Open Access A baseball-bat-like CdTe/TiO2 nanorods-based heterojunction core–shell solar cell(Elsevier, 2013) Karaagac, H.; Parlak, M.; Aygun, L. E.; Ghaffari, M.; Bıyıklı, Necmi; Okyay, Ali KemalRutile TiO2 nanorods on fluorine-doped thin oxide glass substrates via the hydrothermal technique were synthesized and decorated with a sputtered CdTe layer to fabricate a core-shell type n-TiO2/p-CdTe solar cell. Absorbance spectrum verified the absorption contribution of both TiO2 and CdTe to the absorption process. The solar cell parameters, such as open circuit voltage, short circuit current density, fill factor and power conversion efficiency were found to be 0.34 V, 1.27 mA cm-2, 28% and 0.12%, respectively. .Item Open Access Indium rich InGaN solar cells grown by MOCVD(Springer New York LLC, 2014) Çakmak, H.; Arslan, E.; Rudziński, M.; Demirel, P.; Unalan, H. E.; Strupiński, W.; Turan, R.; Öztürk, M.; Özbay, EkmelThis study focuses on both epitaxial growths of InxGa 1-xN epilayers with graded In content, and the performance of solar cells structures grown on sapphire substrate by using metal organic chemical vapor deposition. The high resolution X-ray and Hall Effect characterization were carried out after epitaxial InGaN solar cell structures growth. The In content of the graded InGaN layer was calculated from the X-ray reciprocal space mapping measurements. Indium contents of the graded InGaN epilayers change from 8.8 to 7.1 % in Sample A, 15.7-7.1 % in Sample B, and 26.6-15.1 % in Sample C. The current voltage measurements of the solar cell devices were carried out after a standard micro fabrication procedure. Sample B exhibits better performance with a short-circuit current density of 6 mA/cm2, open-circuit voltage of 0.25 V, fill factor of 39.13 %, and the best efficiency measured under a standard solar simulator with one-sun air mass 1.5 global light sources (100 mW/cm2) at room temperature for finished devices was 0.66 %.Item Open Access Lithium salt-nonionic surfactant lyotropic liquid crystalline gel-electrolytes with redox couple for dye sensitized solar cells(Royal Society of Chemistry, 2016) Yılmaz, E.; Olutaş, E. B.; Barım, G.; Bandara, J.; Dag, Ö.Lithium salt (LiCl, LiBr, LiI, or LiNO3) and a non-ionic surfactant (such as 10-lauryl ether, C12E10) form lyotropic liquid crystalline (LLC) mesophases in the presence of a small amount of water. The mesophases can be prepared as gels by mixing all the ingredients in one pot or in the solution phase that they can be prepared by coating over any substrate where the LLC phase is formed by evaporating excess solvent. The second method is easier and produces the same mesophase as the first method. A typical composition of the LLC phases consists of 2-3 water per salt species depending on the counter anion. The LiI-C12E10 mesophases can also be prepared by adding I2 to the media to introduce an I-/I3 - redox couple that may be used as a gel-electrolyte in a dye-sensitized solar cell. Even though the mesophases contain a large amount of water in the media, this does not affect the cell performance. The water molecules in the mesophase are in the hydration sphere of the ions and do not act like bulk water, which is harmful to the anode of the dye-sensitized solar cells (DSSC). There are two major drawbacks of the salt-surfactant LLC mesophases in the DSSCs; one is the diffusion of the gels into the pores of the anode electrode and the other is the low ionic conductivity. The first issue was partially overcome by introducing the gel content as a solution and the gelation was carried in/over the pores of the dye modified titania films. To increase the ionic conductivity of the gels, other salts (such as LiCl, LiBr, and LiNO3) with better ionic conductivity were added to the media, however, those gels behave less effectively than pure LiI/I2 systems. Overall, the DSSCs constructed using the LLC electrolyte display high short circuit current (Isc of around 10 mA), high open circuit voltage (Voc of 0.81 V) and good fill factor (0.69) and good efficiency (3.3%). There is still room for improvement in addressing the above issues in order to enhance the cell efficiency by developing new methods of introducing the gel-electrolytes into the mesopores of the anode electrode.