Browsing by Subject "Nonlinear equivalent circuit"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Analysis of mutual acoustic coupling in CMUT arrays using an accurate lumped element nonlinear equivalent circuit model(2012) Oğuz, H.Kağan; Atalar, Abdullah; Köymen, HayrettinWe use an accurate nonlinear equivalent circuit model to analyze CMUT arrays with multiple cells, where every cell in the array is coupled to other cells at their acoustic terminals through a mutual radiation impedance matrix. We get results comparable to finite element analysis accuracy. Hence, the analysis of a large array becomes a circuit theory problem and can be scrutinized with circuit simulators. We study the mutual acoustic interactions that arise through the immersion medium due to the influence of the generated pressure field by each cell on the others. We compare the performance of different 1D cMUT arrays, where each element is half-wavelength wide and 10 and 20 wavelengths long at the resonance frequency of a single cell. © 2012 IEEE.Item Open Access Nonlinear equivalent circuit model for circular CMUTs in uncollapsed and collapsed mode(IEEE, 2012) Aydoğdu, Elif; Özgürlük, Alper; Oğuz, H. Kağan; Atalar, Abdullah; Kocabaş, Coşkun; Köymen, HayrettinAn equivalent electrical circuit model valid for collapsed mode operation of CMUT is described. The across and through variables of the circuit model are chosen to be rms force and rms displacement over the surface of the CMUT membrane. The relation between rms displacement and applied voltage is obtained through analytical calculations utilizing the exact force distribution. The radiation impedance of collapsed mode CMUT is included as a load impedance in the circuit model. The resulting equivalent circuit is merged with uncollapsed mode model, to obtain a simulation tool that covers the whole operation range of CMUT. © 2012 IEEE.Item Open Access A novel equivalent circuit model for CMUTs(IEEE, 2009-09) Oğuz, H. Kağan; Olcum, Selim; Senlik, Muhammed N.; Atalar, Abdullah; Köymen, HayrettinA nonlinear equivalent circuit for immersed transmitting capacitive micromachined ultrasonic transducers (CMUTs) is presented. The velocity profile across the CMUT surface maintains the same form over a wide frequency range. This property and the profile are used to model both the electromechanical conversion and the mechanical section. The model parameters are calculated considering the root mean square of the velocity distribution on the membrane surface as the through variable. The new model is compared with the FEM simulation results. The new model predicts the CMUT performance very accurately. ©2009 IEEE.