Browsing by Subject "Noise measurement"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Current constrained voltage scaled reconstruction (CCVSR) algorithm for MR-EIT and its performance with different probing current patterns(Institute of Physics Publishing, 2003) Birgül, Ö.; Eyüboğlu, B. M.; İder, Y. Z.Conventional injected-current electrical impedance tomography (EIT) and magnetic resonance imaging (MRI) techniques can be combined to reconstruct high resolution true conductivity images. The magnetic flux density distribution generated by the internal current density distribution is extracted from MR phase images. This information is used to form a fine detailed conductivity image using an Ohm's law based update equation. The reconstructed conductivity image is assumed to differ from the true image by a scale factor. EIT surface potential measurements are then used to scale the reconstructed image in order to find the true conductivity values. This process is iterated until a stopping criterion is met. Several simulations are carried out for opposite and cosine current injection patterns to select the best current injection pattern for a 2D thorax model. The contrast resolution and accuracy of the proposed algorithm are also studied. In all simulation studies, realistic noise models for voltage and magnetic flux density measurements are used. It is shown that, in contrast to the conventional EIT techniques, the proposed method has the capability of reconstructing conductivity images with uniform and high spatial resolution. The spatial resolution is limited by the larger element size of the finite element mesh and twice the magnetic resonance image pixel size.Item Open Access FAME: Face association through model evolution(IEEE, 2015-06) Gölge, Eren; Duygulu, PınarWe attack the problem of building classifiers for public faces from web images collected through querying a name. The search results are very noisy even after face detection, with several irrelevant faces corresponding to other people. Moreover, the photographs are taken in the wild with large variety in poses and expressions. We propose a novel method, Face Association through Model Evolution (FAME), that is able to prune the data in an iterative way, for the models associated to a name to evolve. The idea is based on capturing discriminative and representative properties of each instance and eliminating the outliers. The final models are used to classify faces on novel datasets with different characteristics. On benchmark datasets, our results are comparable to or better than the state-of-the-art studies for the task of face identification. © 2015 IEEE.