FAME: Face association through model evolution

Date

2015-06

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
3
views
28
downloads

Citation Stats

Series

Abstract

We attack the problem of building classifiers for public faces from web images collected through querying a name. The search results are very noisy even after face detection, with several irrelevant faces corresponding to other people. Moreover, the photographs are taken in the wild with large variety in poses and expressions. We propose a novel method, Face Association through Model Evolution (FAME), that is able to prune the data in an iterative way, for the models associated to a name to evolve. The idea is based on capturing discriminative and representative properties of each instance and eliminating the outliers. The final models are used to classify faces on novel datasets with different characteristics. On benchmark datasets, our results are comparable to or better than the state-of-the-art studies for the task of face identification. © 2015 IEEE.

Source Title

IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops

Publisher

IEEE

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English