Browsing by Subject "Noise characteristic"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Investigation of bias current and modulation frequency dependences of detectivity of YBCO TES and the effects of coating of Cu-C composite absorber layer(2009) Moftakharzadeh, A.; Kokabi, A.; Bozbey, A.; Ghodselahi, T.; Vesaghi, M.A.; Khorasani, S.; Banzet, M.; Schubert J.; Fardmanesh, M.Bolometric response and noise characteristics of YBCO superconductor transition edge IR detectors with relatively sharp transition and its resulting detectivity are investigated both theoretically and experimentally. The magnitude of response of a fabricated device was obtained for different bias currents and modulation frequencies. Using the measured and calculated bolometric response and noise characteristics, we found and analyzed the device detectivity versus frequency for different bias currents. The detectivity versus chopping frequency of the device did not decrease following the response strongly, due to the decrease of the noise at higher frequencies up to 1 kHz, resulting in maximum detectivity around the modulation frequency of 100 Hz. We also improved the responsivity of the device through the increase of the surface absorption by using a novel infrared absorber, which is made of a copper-carbon composite, coated in a low-temperature process. Within the modulation frequency range studied in this paper, comparison of device detectivity before and after coating is also presented. © 2009 IEEE.Item Open Access Surface recombination noise in InAs / GaSb superlattice photodiodes(IOP Institute of Physics Publishing, 2013) Tansel, T.; Kutluer, K.; Muti, A.; Salihoglu, Ö.; Aydınlı, Atilla; Turan, R.The standard Schottky noise approach alone is not sufficient to describe the noise mechanism in an InAs/GaSb superlattice photodetector at reverse negative bias. The additional noise identified appears at surface activation energies below 60meV and is inversely proportional to the reverse bias. In order to satisfactorily explain the experimental data, we hereby propose the existence of a surface recombination noise that is a function of both the frequency and bias. The calculated noise characteristics indeed show good agreement with the experimental data.