Browsing by Subject "Neural differentiations"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Bioactive peptide functionalized aligned cyclodextrin nanofibers for neurite outgrowth(Royal Society of Chemistry, 2017) Hamsici, S.; Cinar, G.; Celebioglu A.; Uyar, Tamer; Tekinay, A. B.; Güler, Mustafa O.Guidance of neurite extension and establishment of neural connectivity hold great importance for neural tissue regeneration and neural conduit implants. Although bioactive-epitope functionalized synthetic or natural polymeric materials have been proposed for the induction of neural regeneration, chemical modifications of these materials for neural differentiation still remain a challenge due to the harsh conditions of chemical reactions, along with non-homogeneous surface modifications. In this study, a facile noncovalent functionalization method is proposed by exploiting host-guest interactions between an adamantane-conjugated laminin derived bioactive IKVAV epitope and electrospun cyclodextrin nanofibers (CDNFs) to fabricate implantable scaffolds for peripheral nerve regeneration. While electrospun CDNFs introduce a three-dimensional biocompatible microenvironment to promote cellular viability and adhesion, the bioactive epitopes presented on the surface of electrospun CDNFs guide the cellular differentiation of PC-12 cells. In addition to materials synthesis and smart functionalization, physical alignment of the electrospun nanofibers guides the cells for enhanced differentiation. Cells cultured on aligned and IKVAV functionalized electrospun CDNFs had significantly higher expression of neuron-specific βIII-tubulin and synaptophysin. The neurite extension is also higher on the bioactive aligned scaffolds compared to random and non-functionalized electrospun CDNFs. Both chemical and physical cues were utilized for an effective neuronal differentiation process. © The Royal Society of Chemistry.Item Open Access Protein-releasing conductive anodized alumina membranes for nerve-interface materials(Elsevier Ltd, 2016) Altuntas, S.; Buyukserin, F.; Haider, A.; Altinok, B.; Bıyıklı, Necmi; Aslim, B.Nanoporous anodized alumina membranes (AAMs) have numerous biomedical applications spanning from biosensors to controlled drug delivery and implant coatings. Although the use of AAM as an alternative bone implant surface has been successful, its potential as a neural implant coating remains unclear. Here, we introduce conductive and nerve growth factor-releasing AAM substrates that not only provide the native nanoporous morphology for cell adhesion, but also induce neural differentiation. We recently reported the fabrication of such conductive membranes by coating AAMs with a thin C layer. In this study, we investigated the influence of electrical stimulus, surface topography, and chemistry on cell adhesion, neurite extension, and density by using PC 12 pheochromocytoma cells in a custom-made glass microwell setup. The conductive AAMs showed enhanced neurite extension and generation with the electrical stimulus, but cell adhesion on these substrates was poorer compared to the naked AAMs. The latter nanoporous material presents chemical and topographical features for superior neuronal cell adhesion, but, more importantly, when loaded with nerve growth factor, it can provide neurite extension similar to an electrically stimulated CAAM counterpart.Item Open Access Three-Dimensional Laminin Mimetic Peptide Nanofiber Gels for In Vitro Neural Differentiation(Wiley-VCH Verlag, 2017) Gunay, Gokhan; Sever, Melike; Tekinay, Ayse B.; Güler, Mustafa O.The extracellular matrix (ECM) provides biochemical signals and structural support for cells, and its functional imitation is a fundamental aspect of biomaterial design for regenerative medicine applications. The stimulation of neural differentiation by a laminin protein-derived epitope in two-dimensional (2D) and three-dimensional (3D) environments is investigated. The 3D gel system is found to be superior to its 2D counterpart for the induction of neural differentiation, even in the absence of a crucial biological inducer in nerve growth factor (NGF). In addition, cells cultured in 3D gels exhibits a spherical morphology that is consistent with their form under in vivo conditions. Overall, the present study underlines the impact of bioactivity, dimension, and NGF addition, as well as the cooperative effects thereof, on the neural differentiation of PC-12 cells. These results underline the significance of 3D culture systems in the development of scaffolds that closely replicate in vivo environments for the formation of cellular organoid models in vitro. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim