Browsing by Subject "Network-on-chip architectures"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Adaptive routing framework for network on chip architectures(ACM, 2016-01) Mustafa, Naveed Ul; Öztürk, Özcan; Niar, S.In this paper we suggest and demonstrate the idea of applying multiple routing algorithms during the execution of a real application mapped on a Network-on-Chip (NoC). Traffic pattern of a real application may change during its execution. As performance of an algorithm depends on the traffic pattern, using the same routing algorithm for the entire span of execution may be inefficient. We study the feasibility of this idea for applications such as SPARSE and MPEG-4 decoder, by applying different routing algorithms. By applying more than one routing algorithms, throughput improves up to 17.37% and 6.74% in the case of SPARSE and MPEG-4 decoder applications, respectively, as compared to the application of single routing algorithm. © 2016 ACM.Item Open Access Energy reduction in 3D NoCs through communication optimization(Springer Wien, 2015) Ozturk, O.; Akturk I.; Kadayif I.; Tosun, S.Network-on-Chip (NoC) architectures and three-dimensional (3D) integrated circuits have been introduced as attractive options for overcoming the barriers in interconnect scaling while increasing the number of cores. Combining these two approaches is expected to yield better performance and higher scalability. This paper explores the possibility of combining these two techniques in a heterogeneity aware fashion. Specifically, on a heterogeneous 3D NoC architecture, we explore how different types of processors can be optimally placed to minimize data access costs. Moreover, we select the optimal set of links with optimal voltage levels. The experimental results indicate significant savings in energy consumption across a wide range of values of our major simulation parameters.Item Open Access ILP-based communication reduction for heterogeneous 3D network-on-chips(IEEE, 2013-02-03) Aktürk, İsmail; Öztürk, ÖzcanNetwork-on-Chip (NoC) architectures and three-dimensional integrated circuits (3D ICs) have been introduced as attractive options for overcoming the barriers in interconnect scaling while increasing the number of cores. Combining these two approaches is expected to yield better performance and higher scalability. This paper explores the possibility of combining these two techniques in a heterogeneity aware fashion. We explore how heterogeneous processors can be mapped onto the given 3D chip area to minimize the data access costs. Our initial results indicate that the proposed approach generates promising results within tolerable solution times. © 2013 IEEE.