BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Negative phase velocity"

Filter results by typing the first few letters
Now showing 1 - 6 of 6
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Development of left-handed composite materials and negative refracting photonic crystals with subwavelength focusing
    (SPIE, 2005) Özbay, Ekmel
    We review the studies conducted in our group concerning electromagnetic properties of metamaterials and photonic crystals with negative effective index of refraction. In particular, we demonstate the true left handed behavior of a 2D composite metamaterial, by analyzing the electric and magnetic response of the material components systematically. The negative refraction, subwavelength focusing, and flat lens phenomena using 2D dielectric photonic crystals are also presented.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    EU NoE metamorphose: Metamaterials research activities
    (SPIE, 2005) Özbay, Ekmel
    We will present the activities of METAMORPHOSE a network of excellence (NoE) formed under EU-FP6 on the area of metamaterials. The main scientific objective of the partners of this consortium is to develop new types of artificial materials, referred to below as metamaterials, with electromagnetic properties that cannot be found among natural materials. The results of this development should lead to a conceptually new range of radio, microwave, and optical technologies, based on revolutionary new materials made by large-scale assembly of some basic elements (nanoscopic and microscopic) in unprecedented combinations. Further information on this NoE can be found in http://www.metamaterials-eu.org.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Experimental demonstration of sub-wavelength imaging by left handed metamaterials
    (SPIE, 2007) Özbay, Ekmel
    We review the studies conducted in our group concerning electromagnetic properties of metamaterials and photonic crystals with negative effective index of refraction. In particular, we demonstate the true left handed behavior of a 2D composite metamaterial, by analyzing the electric and magnetic response of the material components systematically. The negative refraction, subwavelength focusing, and flat lens phenomena using left handed metamaterials and photonic crystals are also presented.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Metamaterials with negative permeability and negative refractive index: Experiments and simulations
    (Institute of Physics Publishing Ltd., 2007) Özbay, Ekmel; Guven, K.; Aydin, K.
    We report the transmission characteristics of split-ring resonator and left-handed metamaterials (LHM) in the microwave frequency regime. A left-handed transmission band is observed at the frequencies where both dielectric permittivity and magnetic permeability are negative. The reflection characteristics of ordered and disordered LHMs are studied. The two-dimensional LHM structure is verified to have a negative refractive index. We employed three different methods to observe negative refraction: the beam shift method, refraction through wedge-shaped negative-index metamaterial, and phase-shift experiments.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Observation of negative refraction and negative phase velocity in true left-handed metamaterials
    (IEEE, 2007) Özbay, Ekmel; Soukoulis, C.M.
    We report a true left-handed (LH) behavior in a composite metamaterial consisting of periodically arranged split ring resonator (SRR) and wire structures. The magnetic resonance of the SRR structure is demonstrated by comparing the transmission spectra of SRRs with that of closed SRRs. We confirmed experimentally that the effective plasma frequency of the LH material composed of SRRs and wires is lower than the plasma frequency of the wires. A well-defined left-handed transmission band with a peak value of -1.2 dB (-0.3 dB/cm) is obtained. We also report the transmission characteristics of a 2D composite metamaterial (CMM) structure in free space. At the frequencies where left-handed transmission takes place, we experimentally confirmed that the CMM structure has effective negative refractive index. Phase shift between consecutive numbers of layers of CMM is measured and phase velocity is shown to be negative at the relevant frequency range. Refractive index values obtained from the refraction experiments and the phase measurements are in good agreement. The experimental results agree extremely well with the theoretical calculations. © 2006 EuMA.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Observation of negative refraction and negative phase velocity in true left-handed metamaterials
    (SPIE, 2005) Özbay, Ekmel
    We report a true left-handed (LH) behavior in a composite metamaterial consisting of periodically arranged split ring resonator (SRR) and wire structures. The magnetic resonance of the SRR structure is demonstrated by comparing the transmission spectra of SRRs with that of closed SRRs. We confirmed experimentally that the effective plasma frequency of the LH material composed of SRRs and wires is lower than the plasma frequency of the wires. A well-defined left-handed transmission band with a peak value of -1.2 dB (-0.3 dB/cm) is obtained. We also report the transmission characteristics of a 2D composite metamaterial (CMM) structure in free space. At the frequencies where left-handed transmission takes place, we experimentally confirmed that the CMM structure has effective negative refractive index. Phase shift between consecutive numbers of layers of CMM is measured and phase velocity is shown to be negative at the relevant frequency range. Refractive index values obtained from the refraction experiments and the phase measurements are in good agreement. The experimental results agree extremely well with the theoretical calculations.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback