Browsing by Subject "Nanocrystalline alloys"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Elements of nanocrystal high-field carrier transport modeling(Wiley, 2007) Sevik, Cem; Bulutay, CeyhunEmbedded semiconductor nanocrystals (NCs) within wide bandgap oxide materials are being considered for light emission and solar cell applications. One of the fundamental issues is the high-field transport in NCs. This requires the combination of a number of tools: ensemble Monte Carlo carrier transport simulation, ab initio band structure of the bulk oxide, Fermi's golden rule modeling of impact ionization and Auger processes and the pseudopotential-based atomistic description of the confined NC states. These elements are outlined in this brief report.Item Open Access Fabrication of nanostructured medical-grade stainless steel by mechanical alloying and subsequent liquid-phase sintering(Springer, 2012-05-10) Salahinejad, E.; Hadianfard, M. J.; Ghaffari, Mohammad; Mashhadi, S. B.; Okyay, Ali KemalThis article focuses on the microstructure of medical-grade P558 (ASTM F2581) stainless steel produced by mechanical alloying and liquid-phase sintering. Rietveld X-ray diffraction and transmission electron microscopy reflect that the mechanically alloyed stainless steel powder is a nanocrystal dispersed amorphous matrix composite.Mn-11.5 wt pct Si eutectic alloy as additive improves densification of the synthesized P558 alloy via liquid-phase sintering mechanism. X-ray mapping shows that after sintering at 1323 K (105°C) for 1 hour, a uniform distribution of dissolved Mn and Si is achieved. Moreover, the development of a nanostructured, fully austenitic stainless steel after sintering at the same temperature is realized by X-ray diffraction and transmission electron microscopy.Item Open Access Nanocrystal integrated light emitting diodes based on radiative and nonradiative energy transfer for the green gap(IEEE, 2009) Nizamoğlu, Sedat; Sarı, Emre; Baek J.-H.; Lee I.-H.; Demir, Hilmi VolkanRecently the photometric conditions for ultra-efficient solid-state lighting have been discussed [1-2]. These studies show that a luminous efficacy of optical radiation at 408 lm/Wopt and a color rendering index (CRI) of 90 at a correlated color temperature (CCT) of 3000 K are achievable at the same time. For this purpose light emitting diodes (LEDs) emitting in blue, green, yellow, and red colors at 463, 530, 573, and 614 nm with relative optical power levels of 1/8, 2/8, 2/8, and 3/8, are required, respectively [1-2]. Although InxGa1-xN material system is capable to cover the whole visible by changing the In composition (x), it is technically extremely challenging to obtain efficient green/yellow light emitting diodes especially at those wavelengths (i.e., at 530 nm and 573 nm, respectively) due to reduced internal quantum efficiency [2-4]. Furthermore, by using the (Al xGa1-x)1-yInyP quaternary alloy it is also possible to cover from 650 nm to 580 nm. However, the efficiencies significantly decrease towards green. Therefore, there exists a significant gap in the green-yellow spectral regions (known as "the green gap") to make efficient light emitting diodes. To address this green gap problem, we propose and demonstrate proof-of-concept nanocrystal (NCs) hybridized green/yellow light emitting diodes that rely on both radiative energy transfer and nonradiative energy transfer (i.e., FRET-Förster resonance energy transfer) for color conversion on near-ultraviolet (near-UV) LEDs.Item Open Access Phase transformation during mechano-synthesis of nanocrystalline/amorphous Fe–32Mn–6Si alloys(Elsevier, 2013) Amini, R.; Shamsipoor, A.; Ghaffari, M.; Alizadeh, M.; Okyay, Ali KemalMechano-synthesis of Fe-32Mn-6Si alloy by mechanical alloying of the elemental powder mixtures was evaluated by running the ball milling process under an inert argon gas atmosphere. In order to characterize the as-milled powders, powder sampling was performed at predetermined intervals from 0.5 to 192 h. X-ray florescence analyzer, X-ray diffraction, scanning electron microscope, and high resolution transmission electron microscope were utilized to investigate the chemical composition, structural evolution, morphological changes, and microstructure of the as-milled powders, respectively. According to the results, the nanocrystalline Fe-Mn-Si alloys were completely synthesized after 48 h of milling. Moreover, the formation of a considerable amount of amorphous phase during the milling process was indicated by quantitative X-ray diffraction analysis as well as high resolution transmission electron microscopy image and its selected area diffraction pattern. It was found that the α-to-γ and subsequently the amorphous-to-crystalline (especially martensite) phase transformation occurred by milling development.Item Open Access Raman and TEM studies of Ge nanocrystal formation in SiOx: Ge/SiOx multilayers(Wiley, 2007) Dana, Aykutlu; Aǧan, S.; Tokay, S.; Aydınlı, Atilla; Finstad, T. G.Alternating germanosilicate-siliconoxide layers of 10-30 nm thickness were grown on Si substrates by plasma enhanced chemically vapor deposition (PECVD). The compositions of the grown films were determined by X-ray photoelectron spectroscopy measurements. The films were annealed at temperatures varying from 670 to 1000°C for 5 to 45 minutes under nitrogen atmosphere. High resolution cross section TEM images, electron diffraction and electron energy-loss spectroscopy as well as energy-dispersive X-ray analysis (EDAX) data confirm presence of Ge nanocrystals in each layer. The effect of annealing on the Ge nanocrystal formation in multilayers was investigated by Raman spectroscopy and Transmission Electron Microscopy (TEM). As the annealing temperature is raised to 850°C, single layer of Ge nanocrystals observed at lower annealing temperatures is transformed into a double layer with the smaller sized nanocrystals closer to the substrate SiO2 interface.Item Open Access White light generation with CdSe/ZnS core-shell nanocrystals and InGaN/GaN light emitting diodes(IEEE, 2006) Nizamoğlu, Sedat; Özel, Sedat; Sarı, Emre; Demir, Hilmi VolkanWe present hybrid white light sources that integrate CdSe/ZnS core-shell nanocrystals on blue InGaN/GaN light emitting diodes (LED). We report on the demonstrations of white light generation using yellow nanocrystals (λPL=580 nm) hybridized on a blue LED (λEL= 440 nm) with tristimulus coordinates of x=0.37 and y=0.25, correlated color temperature of Tc=2692 K, and color rendering index of R a=14.6; cyan and red nanocrystals (λPL=500 nm and 620 nm) on a blue LED (λEL=440 nm) with x=0.37, y=0.28, T c=3246 K, and Ra=19.6; and green, yellow, and red nanocrystals (λPL=540 nm, 580 nm, and 620 nm) on a blue LED (λEL=452 nm) with x=0.30, y=0.28, Tc =7521 K, and Ra=40.9. © 2006 IEEE.