Browsing by Subject "Multiuser detection"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access A blind adaptive decorrelating detector for CDMA systems(1998) Ulukus, S.; Yates, R.D.The decorrelating detector is known to eliminate multiaccess interference when the signature sequences of the users are linearly independent, at the cost of enhancing the Gaussian receiver noise. In this paper, we present a blind adaptive decorrelating detector which is based on the observation of readily available statistics. The algorithm recursively updates the filter coefficients of a desired user by using the output of the current filter. Due to the randomness of the information bits transmitted and the ambient Gaussian channel noise, the filter coefficients evolve stochastically. We prove the convergence of the filter coefficients to a decorrelating detector in the mean squared error (MSE) sense. We develop lower and upper bounds on the MSE of the receiver filter from the convergence point and show that with a fixed step size sequence, the MSE can be made arbitrarily small by choosing a small enough step size. With a time-varying step size sequence, the MSE converges to zero implying an exact convergence. The proposed algorithm is distributed, in the sense that no information about the interfering users such as their signature sequences or power levels is needed. The algorithm requires the knowledge of only two parameters for the construction of the receiver filter of a desired user: the desired user's signature sequence and the variance of the additive white Gaussian (AWG) receiver noise. This detector, for an asynchronous code division multiple access (CDMA) channel, converges to the one-shot decorrelating detector.Item Open Access A delay-tolerant asynchronous two-way-relay system over doubly-selective fading channels(Institute of Electrical and Electronics Engineers Inc., 2015) Salim, A.; Duman, T. M.We consider design of asynchronous orthogonal frequency division multiplexing (OFDM) based diamond two-way-relay (DTWR) systems in a time-varying frequency-selective (doubly-selective) fading channel. In a DTWR system, two users exchange their messages with the help of two relays. Most of the existing works on asynchronous DTWR systems assume only small relative propagation delays between the received signals at each node that do not exceed the length of the cyclic-prefix (CP). However, in certain practical communication systems, significant differences in delays may take place, and hence existing solutions requiring excessively long CPs may be highly inefficient. In this paper, we propose a delay-independent CP insertion mechanism in which the CP length depends only on the number of subcarriers and the maximum delay spread of the corresponding channels. We also propose a symbol detection algorithm that is able to tolerate very long relative delays, that even exceed the length of the OFDM block itself, without a large increase in complexity. The proposed system is shown to significantly outperform other alternatives in the literature through a number of specific examples. © 2015 IEEE.Item Open Access Multiple-resampling receiver design for OFDM over Doppler-distorted underwater acoustic channels(2013) Tu, K.; Duman, T. M.; Stojanovic, M.; Proakis J. G.In this paper, we focus on orthogonal frequency-division multiplexing (OFDM) receiver designs for underwater acoustic (UWA) channels with user-and/or path-specific Doppler scaling distortions. The scenario is motivated by the cooperative communications framework, where distributed transmitter/receiver pairs may experience significantly different Doppler distortions, as well as by the single-user scenarios, where distinct Doppler scaling factors may exist among different propagation paths. The conventional approach of front-end resampling that corrects for common Doppler scaling may not be appropriate in such scenarios, rendering a post-fast-Fourier-transform (FFT) signal that is contaminated by user-and/or path-specific intercarrier interference. To counteract this problem, we propose a family of front-end receiver structures that utilize multiple-resampling (MR) branches, each matched to the Doppler scaling factor of a particular user and/or path. Following resampling, FFT modules transform the Doppler-compensated signals into the frequency domain for further processing through linear or nonlinear detection schemes. As part of the overall receiver structure, a gradient-descent approach is also proposed to refine the channel estimates obtained by standard sparse channel estimators. The effectiveness and robustness of the proposed receivers are demonstrated via simulations, as well as emulations based on real data collected during the 2010 Mobile Acoustic Communications Experiment (MACE10, Martha's Vineyard, MA) and the 2008 Kauai Acomms MURI (KAM08, Kauai, HI) experiment.Item Open Access Random access over wireless links: optimal rate and activity probability selection(IEEE, 2017-12) Duman, Tolga M.; Karakoç, N.In this paper, we consider a random access scheme over wireless fading channels based on slotted ALOHA where each user independently decides whether to send a packet or not to a common receiver at any given time slot. To characterize the system throughput, i.e., the expected sum- rate, an information theoretic formulation is developed. We consider two scenarios: classical slotted ALOHA where no multi-user detection (MUD) capability is available and slotted ALOHA with MUD. Our main contribution is that the optimal rates and channel activity probabilities can be characterized as a function of the user distances to the receiver to maximize the system throughput. In addition, we address the issue of fairness among the users and provide solutions, which guarantee a minimum amount of individual throughput.Item Open Access An underwater acoustic communications scheme with inherent scale diversity for multiple users(IEEE, 2013) Zhou, M.; Zhang J.J.; Papandreou-Suppappola, A.; Duman, Tolga M.Wideband underwater acoustic communication channels can cause undesirable multipath and Doppler scaling distortions to propagating acoustic signals. In this paper, we propose to exploit a time-scale canonical representation for wideband time-varying channels to achieve joint multipath-scale diversity. We design a signaling scheme with hyperbolic time-frequency signatures that is matched to the underwater acoustic environment to achieve scale diversity. The signaling scheme, combined with code-division multiple-access, is extended to multiple user transmission to improve multiuser detection performance, as demonstrated with simulations. © 2013 MTS.