A delay-tolerant asynchronous two-way-relay system over doubly-selective fading channels

Date

2015

Authors

Salim, A.
Duman, T. M.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

IEEE Transactions on Wireless Communications

Print ISSN

1536-1276

Electronic ISSN

Publisher

Institute of Electrical and Electronics Engineers Inc.

Volume

14

Issue

7

Pages

3850 - 3865

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
2
views
19
downloads

Series

Abstract

We consider design of asynchronous orthogonal frequency division multiplexing (OFDM) based diamond two-way-relay (DTWR) systems in a time-varying frequency-selective (doubly-selective) fading channel. In a DTWR system, two users exchange their messages with the help of two relays. Most of the existing works on asynchronous DTWR systems assume only small relative propagation delays between the received signals at each node that do not exceed the length of the cyclic-prefix (CP). However, in certain practical communication systems, significant differences in delays may take place, and hence existing solutions requiring excessively long CPs may be highly inefficient. In this paper, we propose a delay-independent CP insertion mechanism in which the CP length depends only on the number of subcarriers and the maximum delay spread of the corresponding channels. We also propose a symbol detection algorithm that is able to tolerate very long relative delays, that even exceed the length of the OFDM block itself, without a large increase in complexity. The proposed system is shown to significantly outperform other alternatives in the literature through a number of specific examples. © 2015 IEEE.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)