BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Molecular orientation"

Filter results by typing the first few letters
Now showing 1 - 4 of 4
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Interlocking shish-kebab morphology in polybutene-1
    (John Wiley & Sons, Inc., 2002) Kalay, G.; Kalay, C. R.
    The aim of this research was to explore the effect of shear-controlled orientation injection molding (SCORIM) on polybutene-1 (PB-1). This article describes the methods and processing conditions used for injection molding and discusses the properties of the moldings. Both conventional and SCORIM have been used for the production of moldings. SCORIM is based on the application of specific macroscopic shears to a solidifying melt that facilitates enhanced molecular alignment. The effect of the process was investigated by performing mechanical tests, X-ray studies, differential scanning calorimetric studies, polarized light microscopy, and atomic force microscopy (AFM). Moldings exhibited an improved mechanical performance as compared with conventional moldings. Young's modulus was increased over twofold, and the impact energy was enhanced by 60%. The improvement in mechanical performance was combined with an increase in crystallinity and enhanced molecular orientation. The application of SCORIM also favored the formation of the stable Form I' in PB-1. The formation of interlocking shish-kebab morphology following the application of SCORIM was observed in the AFM studies. Relationships between the mechanical properties of PB-1 and the micromorphologies formed during processing are demonstrated.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Linear measurements of nanomechanical phenomena using small-amplitude AFM
    (Materials Research Society, 2004) Hoffmann, P. M.; Patil, S.; Matei, G.; Tanülkü, A.; Grimble, R.; Özer, Ö.; Jeffery, S.; Oral, Ahmet; Pethica, J.
    Dynamic Atomic Force Microscopy (AFM) is typically performed at amplitudes that are quite large compared to the measured interaction range. This complicates the data interpretation as measurements become highly non-linear. A new dynamic AFM technique in which ultra-small amplitudes are used (as low as 0.15 Angstrom) is able to linearize measurements of nanomechanical phenomena in ultra-high vacuum (UHV) and in liquids. Using this new technique we have measured single atom bonding, atomic-scale dissipation and molecular ordering in liquid layers, including water.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Superradiant lasing from J-aggregated molecules adsorbed onto colloidal silver
    (American Institute of Physics, 1998) Özçelik, S.; Özçelik, I.; Akins, D. L.
    The picosecond time-resolved emission spectrum of the cyanine dye 1,18-diethyl-3,38- bis-~3-sulfopropyl!-5,58,6,68-tetrachlorobenzimidazolocarbocyanine ~also known as BIC! adsorbed onto colloidal silver was examined as a function of laser pulse energy at room temperature. BIC is found to aggregate on colloidal silver, and the number of coherently responding molecules involved in the one-exciton state ~i.e., the coherence length! was estimated to involve 8–9 molecules. Lasing at a remarkably low incident pulse energy threshold was found for this system and explained in terms of a mechanism involving superradiant states created in coherently coupled adsorbed molecules that emit photons which stimulate emission from other spatially distributed superradiant states. © 1998 American Institute of Physics.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Variable energy x-ray photoemission studies of alkylsilane based monolayers on gold
    (American Chemical Society, 2003) Owens, T. M.; Süzer, S.; Banaszak Holl, M. M.
    Gaseous n-hexylsilane (C6H13SiH3), n-octylsilane (C8H17SiH3), and n-octadecylsilane (C18H37SiH3) have been vapor deposited in ultrahigh vacuum (UHV) on freshly evaporated gold surfaces to form monolayers. Surface sensitive X-ray photoemission studies utilizing synchrotron radiation in the 160-360 eV range have been used to characterize these systems. Analyses of the C 1s, Si 2p, and Au 4f and valence band regions permit a structural assessment of the monolayer. The full width at half-maximum of the Si 2p and C 1s core levels, 0.4 and 1.2 or 1.1 eV, respectively, suggest the monolayers are chemically homogeneous. The intensity variation of the Au 4f and Si 2p core levels at different photon energies indicate the surface coverage of the monolayer is ∼96% and the chain orientation is upright on the surface, not parallel to the surface. The valence band of the alkylsilane monolayers exhibit features at ∼-13.2, -14.6, -16.3, -17.6, and -18.9 eV that agree well with those observed for alkyl chains of the same length.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback