Browsing by Subject "Model-based controller"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Model-based identification and control of a one-legged hopping robot(2018-01) Orhon, Hasan EftunSpring-mass models are well established tools for the analysis and control of legged locomotion. Among the alternatives, spring-loaded inverted pendulum (SLIP) model has shown to be a very accurate descriptor of animal locomotion. Despite its wide use, the SLIP model includes non-integrable stance dynamics that prevent analytical solutions for its equations of motion. Fortunately, there are approximate analytical solutions for different SLIP variants. However, the practicality of such approximations are mostly tested on simulation studies with a few notable exceptions. This thesis extends upon a recent approximation to a hip torque actuated dissipative SLIP (TD-SLIP) model that uses torque actuation to compensate for energy losses. Systematic experiments for careful assessment of the predictive performance of the approximate analytical solution is presented on a well-instrumented one-legged hopping robot which is revised to enhance compatibility and accuracy of the system. Electronic structure of the robot is modified according to TD-SLIP model such that robot uses a real-time operating system to increase processing speed. Using the parameters and results generated by the predictive performance of the approximate analytical solution, a model-based controller is designed and implemented on the robot platform to generate a stable closed-loop running behaviour on the one legged hoping robot platform. In addition, ground reaction forces during the stance phase on the experimental platform is investigated and compared with the human running and the traditional SLIP model data to understand if torque-actuated models approximate natural locomotion better than traditional model.Item Open Access Model-in-the-loop development for fuel cell vehicle(IEEE, 2011) Çakmakçı, Melih; Li, Y.; Liu, S.In this paper, the work on developing and validating a model-in-the-loop (MIL) simulation environment for a group of prototype fuel cell vehicles is presented. The MIL model consists of a vehicle plant model and an integrated vehicle system controller model. First, the vehicle simulation plant model is functionally validated with a simple vehicle system controller (VSC) model and then improved to satisfy the input output interface and fidelity requirements. The developed MIL system is then verified for basic functionality against the simple VSC controller model and shows uniform correlation results. It is further validated against vehicle dynamometer test data and demonstrates satisfactory consistency. A rapid model building approach which is suitable for model-based controller design process was also discussed. This approach enabled the developers to use model-to-code algorithms unlike many comparable simulation models. © 2011 AACC American Automatic Control Council.