BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Milling time"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Effects of milling and annealing on formation and structural characterization of nanocrystalline intermetallic compounds from Ni-Ti elemental powders
    (2012) Ghadimi, M.; Shokuhfar, A.; Rostami H.R.; Ghaffari, M.
    Nickel and Titanium elemental powders with a nominal composition Ni-50 at.%Ti were mechanical alloyed in a planetary high-energy ball mill in different milling conditions (5, 10, 20, 40 and 60 h). The investigation revealed that increasing milling time leads to a reduction in crystallite size, and after 60 h of milling, the Ti dissolved in Ni lattice and NiTi (B2) phase was obtained. With milling time, morphology of pre-alloyed powders changed from lamella to globular. Annealing of as-milled powders at 1173 K for 900 s led to formation of nanocrystalline NiTi (B19′), grain growth and release of internal strain. The results indicated that this technique is a powerful and high productive process for preparing NiTi intermetallic compound with nanocrystalline structure and appropriate morphology. © 2012 Elsevier B.V. All rights reserved.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Quantitative phase evolution during mechano-synthesis of Ti-Ni-Cu shape memory alloys
    (Elsevier, 2012-05-29) Amini, R.; Alijani, F.; Ghaffari, M.; Alizadeh, M.; Okyay, Ali Kemal
    Ti-41Ni-9Cu shape memory alloy was synthesized by mechanical alloying of pure elemental Ti, Ni, and Cu powders using high-energy ball milling. The qualitative and quantitative phase analyses of the as-milled powders were done by X-ray diffraction (XRD) using Rietveld refinement and the alloys microstructure was studied by scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). Concerning the results, by milling evolution, the dissolution of the primary materials occurred at different rates and a considerable amount of the amorphous phase as well as B19′-martensite and B2-austenite was created. The formation of Ni solid solution was also evidenced prior to its dissolution. It was found that at sufficient milling time, the mechano-crystallization of the amorphous phase occurred and at the end of milling, the B19′-martensite is the dominant phase of the structure.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Structural and phase evolution in mechanically alloyed calcium copper titanate dielectrics
    (2013) Alizadeh, M.; Ardakani H.A.; Amini, R.; Ghazanfari, M.R.; Ghaffari, M.
    Nanocrystalline calcium-copper-titanate (CCTO) dielectric powders were prepared by mechanical alloying. Phase transformations and structural evolution of the mechanically activated powders were investigated through the Rietveld refinement of the X-ray diffraction results. The crystallite size, lattice strain, and weight fraction of individual phases were estimated based on crystal structure refinement. Furthermore, the microstructural properties and thermal behavior of the milled powders were investigated by Transmission Electron Microscopy (TEM) and Differential Thermal Analysis (DTA), respectively. It was found that CCTO nanocrystals can be successfully synthesized after the amorphization of the initial crystalline materials. Semi-spherical nano-size particles were developed after sufficient milling time. Formation of an amorphous phase during the milling cycle was confirmed by the presence of the glass transition and crystallization peaks in the thermal analysis profiles. © 2012 Elsevier Ltd and Techna Group S.r.l.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback