Browsing by Subject "Microcomputers"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access 2D anisotropic photonic crystals of hollow semiconductor nanorod with liquid crystals(2013) Karaomerlioglu F.; Şimsek, Şevket; Mamedov, Amirullah M.; Özbay, EkmelPhotonic crystals (PCs) have many applications in order to control light-wave propagation. A novel type of two-dimensional anisotropic PC is investigated band gap and optical properties as a hollow semiconductor nanorod with nematicliquid crystals (LC). The PC structure composed of an anisotropic nematicLC in semiconductor square hollow nanorod is designed using the plane wave expansion (PWE) method and finite-difference time-domain (FDTD) method. It has been used 5CB (4-pentyl-4'-cyanobiphenyl) as LC core, and Tellurium (Te) as square hollow nanorod material.The PC with hollow Tenanorod with nematicLC is compared with the PC with solid Tenanorodand the PC with hollow Tenanorod. © (2013) Trans Tech Publications, Switzerland.Item Open Access Asymmetric Fabry-Perot-type transmission in photonic-crystal gratings with one-sided corrugations at a two-way coupling(American Physical Society, 2012-11-29) Serebryannikov, A. E.; Alici, K. B.; Magath, T.; Cakmak, A. O.; Özbay, EkmelStrongly asymmetric Fabry-Perot-type transmission arising at the two-way coupling has been studied in the case of normal incidence for slabs of two-dimensional photonic crystals (PCs) with one-sided corrugations that are made of linear isotropic materials. Comparing to the scenario of unidirectional transmission known for the structures with broken spatial inversion symmetry that requires zero order being uncoupled, in the studied mechanism zero order is either the sole order or one of the orders that may be coupled to a Floquet-Bloch mode. Contrary to the earlier studies of asymmetric transmission at the coupled zero order, structures with nondeep corrugations are considered, which allow one to combine Fabry-Perot-type total-transmission maxima with diffractions in a desired way. At a proper choice of PC lattice and corrugation parameters, higher orders can dominate in Fabry-Perot-type transmission at the noncorrugated-side illumination and also at the total-transmission maxima, whereas only zero order contributes to the transmission at the corrugated-side illumination. As a result, strong asymmetry can be obtained without uncoupling of zero order but it invokes the unidirectional contribution of higher orders. The presented results show that the entire structure can be approximately decomposed into the two independent, regular and grating (nonregular), parts whose contributions to the transmission are additive. Multiple asymmetric transmission maxima can coexist with a rather high equivalent group index of refraction. Possible applications of the studied transmission mechanism are discussed.Item Open Access Nearly perfect resonant absorption and coherent thermal emission by hBN-based photonic crystals(Optical Society of America, 2017) Hajian, H.; Ghobadi, A.; Butun, B.; Özbay, EkmelIn this paper, we numerically demonstrate mid-IR nearly perfect resonant absorption and coherent thermal emission for both polarizations and wide angular region using multilayer designs of unpatterned films of hexagonal boron nitride (hBN). In these optimized structures, the films of hBN are transferred onto a Ge spacer layer on top of a one-dimensional photonic crystal (1D PC) composed of alternating layers of KBr and Ge. According to the perfect agreements between our analytical and numerical results, we discover that the mentioned optical characteristic of the hBN-based 1D PCs is due to a strong coupling between localized photonic modes supported by the PC and the phononic modes of hBN films. These coupled modes are referred as Tamm phonons. Moreover, our findings prove that the resonant absorptions can be red- or blue-shifted by changing the thickness of hBN and the spacer layer. The obtained results in this paper are beneficial for designing coherent thermal sources, light absorbers, and sensors operating within 6.2 μm to 7.3 μm in a wide angular range and both polarizations. The planar and lithography free nature of this multilayer design is a prominent factor that makes it a large scale compatible design. © 2017 Optical Society of America.Item Open Access PocketDrive: A system for mobile control of desktop PC and its applications using PDAs(IEEE, 2007-11) Yıldırım, Yenel; Körpeoğlu, İbrahimToday, consumer electronic devices and PCs are inevitable parts of our daily life. Controlling those devices remotely is an important aspect of the technology. We have already universal remote control devices for controlling consumer electronic devices. Similarly, we may control our desktop and laptop PCs and their applications remotely via portable and smaller computers like PDAs and Pocket PCs. This paper presents a system and its architecture that enable a wireless-enabled PDA to control a PC and its applications remotely over a 802.11 or Bluetooth link. With such a system running on a PDA, a user can start, run and control PC applications from any location that is reachable via 802.11 link. This enables flexibility, ease of use, and freedom for the user of PC applications. ©2007 IEEE.Item Open Access SbSI based photonic crystal superlattices: band structure and optics(IOP, 2015) Şimsek, Ş.; Koç, H.; Palaz, S.; Oltulu, O.; Mamedov, Amirullah M.; Özbay, EkmelIn this work, we present an investigation of the optical properties and band structure calculations for the photonic crystal structures (PCs) based on one-dimensional (1D)-photonic crystal. Here we use 1D SbSI based layers in air background. We have theoretically calculated the photonic band structure and optical properties of SbSI based PC superlattices. In our simulation, we employed the finite-difference time domain (FDTD) technique and the plane wave expansion method (PWE), which implies the solution of Maxwell equations with centered finite-difference expressions for the space and time derivatives.Item Open Access Spectral scalability and optical spectra of fractal multilayer structures: FDTD analysis(Springer Verlag, 2017) Şimsek, Şevket; Palaz, Selami; Mamedov, Amirullah M.; Özbay, EkmelAn investigation of the optical properties and band structures for the conventional and Fibonacci photonic crystals (PCs) based on SrTiO3 and Sb2Te3 is made in the present research. Here, we use one-dimensional SrTiO3- and Sb2Te3-based layers. We have theoretically calculated the photonic band structure and transmission spectra of SrTiO3- and Sb2Te3-based PC superlattices. The position of minima in the transmission spectrum correlates with the gaps obtained in the calculation. The intensity of the transmission depths is more intense in the case of higher refractive index contrast between the layers. © 2016, Springer-Verlag Berlin Heidelberg.Item Open Access SVD-based on-line exercise ECG signal orthogonalization(Institute of Electrical and Electronics Engineers, 1999-03) Acar, B.; Köymen, HayrettinAn orthogonalization method to eliminate unwanted signal components in standard 12-lead exercise electrocardiograms (ECG's) is presented in this work. A singular-value-decomposition-based algorithm is proposed to decompose the signal into two time-orthogonal subspaces; one containing the ECG and the other containing artifacts like baseline wander and electromyogram. The method makes use of redundancy in 12-lead ECG. The same method is also tested for reconstruction of a completely lost channel. The online implementation of the method is given. It is observed that the first two decomposed channels with highest energy are sufficient to reconstruct the ST-segment and J- point. The dimension of the signal space, on the other hand, does not exceed three. Data from 23 patients, with duration ranging from 9 to 21 min, are used.An orthogonalization method to eliminate unwanted signal components in standard 12-lead exercise electrocardiograms (ECG's) is presented in this work. A singular-value-decomposition-based algorithm is proposed to decompose the signal into two time-orthogonal subspaces; one containing the ECG and the other containing artifacts like baseline wander and electromyogram. The method makes use of redundancy in 12-lead ECG. The same method is also tested for reconstruction of a completely lost channel. The online implementation of the method is given. It is observed that the first two decomposed channels with highest energy are sufficient to reconstruct the ST-segment and J-point. The dimension of the signal space, on the other hand, does not exceed three. Data from 23 patients, with duration ranging from 9 to 21 min, are used.