BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Microbolometer"

Filter results by typing the first few letters
Now showing 1 - 6 of 6
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Ald grown zno as an alternative material for plasmonic and uncooled infrared imaging applications
    (2014) Kesim, Yunus Emre
    Plasmonics is touted as a milestone in optoelectronics as this technology can form a bridge between electronics and photonics, enabling the integration of electronics and photonic circuits at the nanoscale. Noble metals such as gold and silver have been extensively used for plasmonic applications due to their ability to support plasmons, yet they suffer from high intrinsic optical losses. Recently, there is an increased effort in the search for alternative plasmonic materials including Si, Ge, III-Nitrides and transparent conductive oxides. The main appeal of these materials, most of them semiconductors, is their lower optical losses, especially in the infrared (IR) regime, compared to noble metals owing to their lower number of free electrons. Other advantages can be listed as low-cost and control on plasma frequency thanks to the tunable electron concentration, i.e. effective doping level. This work focuses on atomic layer deposition (ALD) grown ZnO as a candidate material for plasmonic applications. Optical constants of ZnO are investigated along with figures of merit pertaining to plasmonic waveguides. It is shown that ZnO can alleviate the trade-off between propagation length and mode confinement width owing to tunable dielectric properties. In order to demonstrate plasmonic resonances, a grating structure is simulated using finite-difference-time-domain (FDTD) method and an ultra-wide-band (4-15 µm) infrared absorber is computationally demonstrated. Finally, an all ZnO microbolometer is proposed, where ALD grown ZnO is employed as both the thermistor and the absorber of the microbolometer which is an uncooled infrared imaging unit that relies on the resistance change of the active material (thermistor) as it heats up due to the absorption of incident electromagnetic radiation. The material complexity and process steps of microbolometers could be reduced if the thermistor layer and the absorber layer were consolidated in a single layer. Computational analysis of a basic microbolometer structure using FDTD method is conducted in order to calculate the absorptivity in the long-wave infrared (LWIR) region (8-12 µm). In addition, thermal simulations of the microbolometer structure are conducted using finite element method, and time constant and noise-equivalent-temperature-difference (NETD) values are extracted.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    An analysis for the broad-band absorption enhancement using plasmonic structures on uncooled infrared detector pixels
    (SPIE, 2012-05) Lüleç, S. Z.; Küçük, S. E.; Battal, Enes; Okyay, Ali Kemal; Tanrıkulu, M. Y.; Akın, T.
    This paper introduces an analysis on the absorption enhancement in uncooled infrared pixels using resonant plasmon modes in metal structures, and it reports, for the first time in literature, broad-band absorption enhancement using integrated plasmonic structures in microbolometers for unpolarized long-wave IR detection. Different plasmonic structures are designed and simulated on a stack of layers, namely gold, polyimide, and silicon nitride in order to enhance absorption at the long-wave infrared. The simulated structures are fabricated, and the reflectance measurements are conducted using an FTIR Ellipsometer in the 8-12 μm wavelength range. Finite difference time domain (FDTD) simulations are compared to experimental measurement results. Computational and experimental results show similar spectral reflection trends, verifying broad-band absorption enhancement in the spectral range of interest. Moreover, this paper computationally investigates pixel-wise absorption enhancement by plasmonic structures integrated with microbolometer pixels using the FDTD method. Special attention is given during the design to be able to implement the integrated plasmonic structures with the microbolometers without a need to modify the pre-determined microbolometer process flow. The optimized structure with plasmonic layer absorbs 84 % of the unpolarized radiation in the 8-12 μm spectral range on the average, which is a 22 % increase compared to a reference structure with no plasmonic design. Further improvement may be possible by designing multiply coupled resonant structures.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Analytic thermal modeling for dc to midrange modulation frequency response for thin film high-Tc superconductive edge-transition bolometers
    (OSA Publishing, 2001-03-01) Fardmanesh, M.
    Thin-film superconductive edge-transition bolometers are modeled with a one-dimensional analytic thermal model with joule heating, film and substrate materials, and the physical interface effects taken into consideration. The results from the model agree well with the experimental results of samples made of large-meander-line Yba(2)Cu(3)O(7-x) films on crystalline SrTiO3, LaAlO3, and MgO substrates up to 100 kHz, the limits of the experimental setup. Compared with the results of the SrTiO3 substrate samples, the results from the model of the LaAlO3 and the MgO substrate samples deviate slightly from the measured values at very low modulation frequencies (below similar to 10 Hz). The deviation increases for higher thermal-conductive substrate materials. When the model was used, the substrate absorption and the thermal parameters of the devices could also be investigated. (C) 2001 Optical Society of America
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Control of the Responsivity and the detectivity of superconductive edge-transition YBa2Cu3O7-x bolometers through substrate properties
    (Optical Society of America, 1999-08-01) Fardmanesh, M.; Scoles, K. J.; Rothwarf, A.
    The detectivity D* limits of YBa2Cu3O7-x bolometer on 0.05-cm-thick crystalline substrates are investigated, and a method to increase D* to greater than 10(9) (cm Hz(1/2))/W at a 20-mu m wavelength is proposed. Because the response increases proportionally with the bias current I-b, whereas the noise near T-c (the transition or critical temperature) of our MgO and SrTiO3 substrate samples does not, an increase in D* of these samples is obtained by an increase in I-b. Another limiting factor is the de thermal conductance G(0) of the device, which, although controlled by the substrate-holder thermal boundary resistance for our samples, can be changed by means of thinning the substrate to increase D*. The optimal amount of thinning depends on the substrate's thermal parameters and the radiation modulation frequency. D* in our samples is also found to follow the spectral-radiation absorption of the substrate material.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Electrical properties and device applications of atomic layer deposited ZnO and GaN thin films
    (2014) Bolat, Sami
    Zinc oxide (ZnO), a semiconducting material with a wide band gap of 3.37 eV, has become a promising material for wide range of electronic and optoelectronic applications. One of the most important properties of this material is its large exciton binding energy of 60 meV, which makes ZnO a strong candidate for ultraviolet light emitting diodes and lasers. In addition, potentially high electron mobility and the transparency in the visible region strengthen the future of the ZnO based transparent electronics. Although several applications of ZnO have taken their places in the literature, use of ZnO in the thermal imaging applications is yet to be explored. In the parts of this thesis related to ZnO, the temperature coefficient of resistance and electrical noise together with resistivity and contact resistance properties of atomic layer deposition based ZnO are investigated. Due to its remarkably high temperature coefficient of resistance value and suitable 1/f noise corner frequency, this material is proposed as an alternative material to be used in the active layers of uncooled microbolometers. GaN is another wide gap semiconductor which has been intensely investigated throughout the last decades for its potential usage in both optical and electrical applications. Especially, high saturation velocity of the electric carriers of this material has made it a strong candidate to be used in high power applications. Furthermore the high electron mobility transistors based on the 2-dimensional electron gas region formed between the AlGaN and GaN, have found wide range of applications in radio frequency (RF) electronics area. Currently, most commonly used techniques for growing GaN, are metal organic chemical vapor deposition and molecular beam epitaxy. Both of these techniques offer single crystalline layers; however, the process temperatures used in the growth of the GaN disable the use of this material in low temperature flexible electronic/optoelectronic applications. In order to solve this problem, hollow cathode plasma assisted atomic layer deposition technique is utilized and GaN thin films with polycrystalline structures are successfully grown at 200°C. In the parts of this thesis related to GaN, the electrical properties, the effect of contact annealing on the resistivity of the GaN thin films and the contact resistance between this material and Ti/Au metallization scheme are investigated. Afterwards, we present the world’s first thin film transistor with atomic layer deposition based GaN channel and discuss its electrical characteristics in detail. Finally, the GaN thin film transistors are fabricated by performing all fabrication steps at temperatures below 250°C. This is the lowest process thermal budget for the GaN based thin film transistors reported so far. Electrical characteristics as well as the stability of the proposed device are investigated and the results obtained are discussed. Proposed devices are believed to pave the way for the GaN-based stable flexible/transparent electronics after further materials and process optimization.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A plasmonically enhanced pixel structure for uncooled microbolometer detectors
    (SPIE, 2013) Erturk O.; Battal, Enes; Kucuk, S.E.; Okyay, Ali Kemal; Akin, T.
    This paper introduces a method of broadband absorption enhancement that can be integrated with the conventional suspended microbolometer process with no significant additional cost. The premise of this study is that electric field can be enhanced throughout the structural layer of the microbolometer, resulting in an increase in the absorption of the infrared radiation in the long wave infrared window. A concentric double C-shaped plasmonic geometry is simulated using the FDTD method, and this geometry is fabricated on suspended pixel arrays. Simulation results and FTIR measurements are in good agreement indicating a broadband absorption enhancement in the 8 μm - 12 μm range for LWIR applications. The enhancement is attained using metallic geometries embedded in the structural layer of the suspended microbridge, where the metallic-dielectric interface increases the average absorption of a 35 μm pixel from 67.6% to 80.1%. © 2013 SPIE.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback