Browsing by Subject "Microanalysis"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Terahertz Bandpass Frequency Selective Surfaces on Glass Substrates Using a Wet Micromachining Process(Springer New York LLC, 2017) Ramzan, Mehrab; Khan, Talha Masood; Bolat, Sami; Nebioglu, Mehmet Ali; Altan, Hakan; Okyay, Ali Kemal; Topallı, KağanThis paper presents terahertz (THz) frequency selective surfaces (FSS) implemented on glass substrate using standard microfabrication techniques. These FSS structures are designed for frequencies around 0.8 THz. A fabrication process is proposed where a 100-μm-thick glass substrate is formed through the HF etching of a standard 500-μm-thick low cost glass wafer. Using this fabrication process, three separate robust designs consisting of single-layer FSS are investigated using high-frequency structural simulator (HFSS). Based on the simulation results, the first design consists of a circular ring slot in a square metallic structure on top of a 100-μm-thick Pyrex glass substrate with 70% transmission bandwidth of approximately 0.07 THz, which remains nearly constant till 30° angle of incidence. The second design consists of a tripole structure on top of a 100-μm-thick Pyrex glass substrate with 65% transmission bandwidth of 0.035 THz, which remains nearly constant till 30° angle of incidence. The third structure consists of a triangular ring slot in a square metal on top of a 100-μm-thick Pyrex glass substrate with 70% transmission bandwidth of 0.051 THz, which remains nearly constant up to 20° angle of incidence. These designs show that the reflections from samples can be reduced compared to the conventional sample holders used in THz spectroscopy applications, by using single layer FSS structures manufactured through a relatively simple fabrication process. Practically, these structures are achieved on a fabricated 285-μm-thick glass substrate. Taking into account the losses and discrepancies in the substrate thickness, the measured results are in good agreement with the electromagnetic simulations. © 2017, Springer Science+Business Media New York.Item Open Access Three dimensional microfabricated broadband patch and multifunction reconfigurable antennae for 60 GHz applications(IEEE, 2015-04) Hünerli H. V.; Mopidevi, H.; Cağatay, E.; Imbert, M.; Romeu, J.; Jofre, L.; Çetiner, B. A.; Bıyıklı, NecmiIn this paper we present two antenna designs capable of covering the IEEE 802.11ad (WiGig) frequency band (57-66 GHz and 59-66 GHz respectively). The work below reports the design, microfabrication and characterization of a broadband patch antenna along with the design and microfabrication of multifunction reconfigurable antenna (MRA) in its static form excluding active switching. The first design is a patch antenna where the energy is coupled with a conductor-backed (CB) coplanar waveguide (CPW)-fed loop slot, resulting in a broad bandwidth. The feed circuitry along with the loop is formed on a quartz substrate (at 60 GHz), on top of which an SU-8-based three-dimensional (3D) structure with air cavities is microfabricated. The patch metallization is deposited on top of this structure. The second design is a CB CPW-fed loop slot coupled patch antenna with a parasitic layer on top. The feed circuitry along with the loop is formed on a quartz substrate. On top, the patch metallization is patterned on another quartz substrate. The parasitic pixels are deposited on top of these two quartz layers on top of an SU-8 based 3D structure with air cavities. © 2015 EurAAP.