BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Metallic nanoparticles"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Compound Hertzian chain model for copper-carbon nanocomposites' absorption spectrum
    (2011) Kokabi, A.; Hosseini, M.; Saeedi, S.; Moftakharzadeh, A.; Vesaghi, M.A.; Fardmanesh, M.
    The infrared range optical absorption mechanism of carbon-copper composite thin layer coated on the diamond-like carbon buffer layer has been investigated. By consideration of weak interactions between copper nanoparticles in their network, optical absorption is modelled using their coherent dipole behaviour induced by the electromagnetic radiation. The copper nanoparticles in the bulk of carbon are assumed as a chain of plasmonic dipoles, which have coupling resonance. Considering nearest neighbour interactions for this metallic nanoparticles, surface plasmon resonance frequency (ω 0) and coupled plasmon resonance frequency (ω 1) have been computed. The damping rate against wavelength is derived, which leads to the derivation of the optical absorption spectrum in terms of ω 0 and ω 1. The dependency of the absorption peaks to the particle size and the particle mean spacing is also investigated. The absorption spectrum is measured for different Cu-C thin films with various Cu particle size and spacing. The experimental results of absorption are compared with the obtained analytical ones. © 2011 The Institution of Engineering and Technology.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    SILVER nano-cylinders designed by EBL used as label free LSPR nano-biosensors
    (SPIE, 2011) Cinel, Neval A.; Bütün, Serkan; Özbay, Ekmel
    Localized Surface Plasmon Resonance (LSPR) is based on the electromagnetic-field enhancement of metallic nano-particles. It is observed at the metal-dielectric interface and the resonance wavelength can be tuned by the size, shape, and periodicity of the metallic nanoparticles and the surrounding dielectric environment. This makes LSPR a powerful candidate in bio-sensing. In the present work, the size and period dependency of the LSPR wavelength was studied through simulations and fabrications. The surface functionalization, that transforms the surface into a sensing platform was done and verified. Finally, the concentration dependency of the LSPR shifts was observed. All the measurements were done by a transmission set-up. The study is at an early stage, however results are promising. The detection of specific bacteria species can be made possible with such a detection method. © 2011 SPIE.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy