Browsing by Subject "Membrane"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Amidoxime functionalized Polymers of Intrinsic Microporosity (PIM-1) electrospun ultrafine fibers for rapid removal of uranyl ions from water(Elsevier, 2018) Satılmış, Berk; Işık, T.; Demir, M. M.; Uyar, TamerThe Polymers of Intrinsic Microporosity (PIM-1) is considered as one of the most promising polymer candidates for adsorption applications owing to its high surface area and the ability to tailor the functionality for the targeted species. This study reports a facile method for the preparation of amidoxime functionalized PIM-1 fibrous membrane (AF-PIM-FM) by electrospinning technique and its practical use for the extraction of U(VI) ions from aqueous systems via column sorption under continuous flow. Fibrous membrane form of amidoxime functionalized PIM-1 (AF-PIM-FM) was prepared by electrospinning method owing to its excellent processability in dimethylformamide. Bead-free and uniform fibers were obtained as confirmed by SEM imaging and average fiber diameter was 1.69 ± 0.34 μm for AF-PIM-FM. In addition, electrospun PIM-1 fibrous membrane (PIM-FM) was prepared as a control group. Structural and thermal characterization of powder and membrane forms of the materials were performed using FT-IR, 1 H NMR, XPS, Elemental analyses, TGA, and DSC. The porosity of the samples was measured by N2 sorption isotherms confirming amidoxime PIM-1 still maintain their porosity after functionalization. Amidoxime functionality along with membrane structure makes AF-PIM-FM a promising material for uranyl adsorption. First, a comparison between powder and membrane form of amidoxime functionalized PIM-1 was investigated using batch adsorption process. Although membrane form has shown slightly lower adsorption performance in the batch adsorption process, the advantage of using the membrane in column adsorption processes makes membrane form more feasible for real applications. In addition, amidoxime modification enhanced the uranium adsorption ability of PIM-FM up to 20 times. The effect of initial concentration and pH were investigated along with regeneration of the adsorbents. AF-PIM-FM was successfully used for five adsorption-desorption cycles without having any damage on the fibrous structure.Item Open Access Amine modified electrospun PIM-1 ultrafine fibers for an efficient removal of methyl orange from an aqueous system(Elsevier, 2018) Satılmış, B.; Uyar, TamerPolymers of Intrinsic Microporosity (PIM-1) is a promising material for adsorption and separation applications. While PIM-1 displays high affinity for neutral species, it shows lack of interaction with charged molecules in an aqueous system due to non-polar nature of it. Functionalization of PIM-1 provides an advantage of tailoring the interaction ability as well as the adsorption performance of PIM-1 towards target pollutants. In this study, electrospun Polymer of Intrinsic Microporosity (PIM-1) fibrous membrane (PIM-FM) was reacted with borane dimethyl sulfide complex to obtain amine modified PIM-1 fibrous membrane (AM-PIM-FM). Furthermore, PIM-1 film, which is referred as PIM-1 dense membrane (PIM-DM), was also modified under the same conditions as a control material. Structural analyses have confirmed that nitrile groups of PIM-1 have been fully converted to amine group as a result of the reduction reaction. Average fiber diameter of parent PIM-1 fibers was found 2.3 ± 0.3 μm, and it remained almost the same after the amine modification. In addition, no physical damage has been observed on fiber structure based on the SEM analysis. Both amine modified PIM-1 dense and fibrous membranes became insoluble in common organic solvents. Before the modification, water contact angle of PIM-FM was 138 ± 2° which also remained almost the same after the modification, showing water contact angle of 131 ± 8°. The insolubility along with amine functionality make membranes promising materials for adsorption of anionic dyes from wastewater. Here, dye (i.e. Methyl Orange) removal ability of AM-PIM-FM from an aqueous system was investigated and compared with parent PIM-1 (PIM-FM) as well as dense membrane form (AM-PIM-DM). AM-PIM-FM shows extremely higher adsorption capacity than that of PIM-FM and AM-PIM-DM. The maximum adsorption capacity of AM-PIM-FM was found 312.5 mg g−1 for Methyl Orange. Langmuir isotherm model was found more favorable for the adsorption. AM-PIM-FM was employed effectively in continuous adsorption/desorption studies for several times without having any damage on fiber morphology using batch adsorption process. Furthermore, AM-PIM-FM was successfully used as a molecular filter for the removal of methyl orange from an aqueous system. The results indicate that AM-PIM-FM could be a promising adsorbent for removal of anionic molecules from an aqueous system.Item Open Access Development of superhydrophobic electrospun fibrous membrane of polymers of intrinsic microporosity (PIM-2)(Elsevier, 2018) Satılmış, Bekir; Uyar, TamerPolymers of intrinsic microporosity (PIMs) are increasingly recognized as a potential membrane material for adsorption and separation applications due to their permanent porosity and solution processability. PIM-2 can be produced using commercially available 5,5′,6,6′-Tetrahydroxy-3,3,3′,3′-tetramethyl-1,1′-spirobisindane and decafluorobiphenyl monomers in the powder form. It possesses considerable amount of fluorine in the polymer backbone and this feature could provide significant hydrophobicity to polymer. This research aims to investigate the fabrication of self-standing PIM-2 fibrous membranes by electrospinning method to introduce a useful material for adsorption applications. Electrospinning was performed using tetrachloroethane as a solvent and beadfree, uniform fibers were produced as confirmed by SEM imaging. Average fiber diameter was calculated as 5.5 ± 1.5 μm for a self-standing fibrous membrane of PIM-2. Structural characterization was conducted using FT-IR, NMR and XPS spectroscopies showing the purity of pristine powder and fibrous membrane of PIM-2. Thermal stability of PIM-2 fibrous membrane was investigated using TGA and it shows no discernible weight loss below 450 °C. The porosity of fibrous membrane was investigated by N2 adsorption/desorption measurements that indicates significant microporosity with ∼600 m2 g−1 BET surface area. In addition, the hydrophobicity of PIM-2 was tested by water contact angle measurements, showing 155 ± 6° WCA, indicating superhydrophobicity owing to rough surface and high fluorine content. Consequently, the combination of straightforward synthesis, solution processability, high thermal stability, high surface area, and superhydrophobicity makes PIM-2 a promising candidate for adsorption applications. Therefore, it was successfully employed in organic and oil adsorption. Fibrous membranes of PIM-2 has shown up to 2200 ± 100% and 1900 ± 100% weight gain after in contact with silicon oil and DMSO respectively. In addition, dense membrane of PIM-2 was prepared by solvent casting method and the uptake ability was compared with fibrous membrane showing that fibrous form is more convenient for liquid adsorption applications.