Browsing by Subject "Measurement theory"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Charging / discharging of thin PS / PMMA films as probed by dynamic x-ray photoelectron spectroscopy(2007) Sezen, H.; Ertas, G.; Dâna, A.; Süzer, ŞefikPolystyrene / polymethyl methacrylate (PS-PMMA) thin films were analyzed for detecting phase separation as well as probing their electrical responses by XPS. It was also shown that electrical parameters like resistance or capacitance can also be extracted using dynamical XPS measurements. A Kratos ES300 electron spectrometer was used for XPS measurements, and a nearby filament provided low-energy electrons for charge neutralization. The results show that under a positive stress, low-energy electrons are attracted to the sample and yield less positive charge on the sample, due to partial neutralization.Item Open Access Coherent and incoherent transport through T-shaped double quantum dots(Elsevier B.V., 2008) Moldoveanu, V.; Ţolea, M.; Tanatar, BilalWe investigate the measurement induced dephasing of the Fano effect in the electronic transport through a double quantum dot mesoscopic interferometer coupled to a charge detector. The current and the differential conductance are computed within the Keldysh formalism, taking into account of the inelastic processes due to the dot-detector interaction. We show that the visibility of the Fano lineshape is reduced by applying a finite bias on the charge detector.Item Open Access A highly sensitive atomic force microscope for linear measurements of molecular forces in liquids(American Institute of Physics, 2005) Patil, S.; Matei, G.; Dong, H.; Hoffmann, P. M.; Karaköse, M.; Oral, A.We describe a highly improved atomic force microscope for quantitative nanomechanical measurements in liquids. The main feature of this microscope is a modified fiber interferometer mounted on a five axis inertial slider which provides a deflection sensitivity that is significantly better than conventional laser deflection based systems. The measured low noise floor of 572.0 fmHz provides excellent cantilever amplitude resolution. This allows us to operate the instrument far below resonance at extremely small cantilever amplitudes of less than 1 Å. Thus linear measurements of nanomechanical properties of liquid systems can be performed. In particular, we present measurements of solvation forces in confined octamethylcyclotetrasiloxane and water with amplitudes smaller than the size of the respective molecules. In general, the development of the instrument is important in the context of quantitative nanomechanical measurements in liquid environments.Item Open Access Statistical pattern recognition techniques for target differentiation using infrared sensor(IEEE, 2006) Aytaç, Tayfun; Yüzbaşıoğlu, Ç.; Barshan, BillurThis study compares the performances of various statistical pattern recognition techniques for the differentiation of commonly encountered features in indoor environments, possibly with different surface properties, using simple infrared (IR) sensors. The intensity measurements obtained from such sensors are highly dependent on the location, geometry, and surface properties of the reflecting feature in a way that cannot be represented by a simple analytical relationship, therefore complicating the differentiation process. We construct feature vectors based on the parameters of angular IR intensity scans from different targets to determine their geometry type. Mixture of normals classifier with three components correctly differentiates three types of geometries with different surface properties, resulting in the best performance (100%) in geometry differentiation. The results indicate that the geometrical properties of the targets are more distinctive than their surface properties, and surface recognition is the limiting factor in differentiation. The results demonstrate that simple IR sensors, when coupled with appropriate processing and recognition techniques, can be used to extract substantially more information than such devices are commonly employed for.