Browsing by Subject "Markov chain Monte Carlo"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Production line calibration with data analysis(2022-09) Taş, İsmail BurakProduct weights can be statistically related to controllable and uncontrollable factors of the production processes. Uncontrollable factors may be correlated with controllable factors. We fitted a response surface approximator of product weights and found sub-optimal controllable factors’ values that minimize product weight. Furthermore, we found that the uncertainty of uncontrollable variables and the correlation among them may affect the result of product weight minimization. The company may implement these findings to reduce the cost of production. Also, we formulated a fully Bayesian experimental design problem to minimize product weight tolerance limits and built hierarchical models. Posterior distributions of the hierarchical models’ parameters can be simulated by a Gibbs sampler. However, we conclude that the effectiveness and convergence of the Gibbs sampler may not be robust to candidate design settings while searching over the design space to solve the experimental design problem.Item Open Access Sentence based topic modeling(2014) Sarı, Can TaylanFast augmentation of large text collections in digital world makes inevitable to automatically extract short descriptions of those texts. Even if a lot of studies have been done on detecting hidden topics in text corpora, almost all models follow the bag-of-words assumption. This study presents a new unsupervised learning method that reveals topics in a text corpora and the topic distribution of each text in the corpora. The texts in the corpora are described by a generative graphical model, in which each sentence is generated by a single topic and the topics of consecutive sentences follow a hidden Markov chain. In contrast to bagof-words paradigm, the model assumes each sentence as a unit block and builds on a memory of topics slowly changing in a meaningful way as the text flows. The results are evaluated both qualitatively by examining topic keywords from particular text collections and quantitatively by means of perplexity, a measure of generalization of the model.Item Open Access Uncertainty analysis of cutting force coefficients during micromilling of titanium alloy(2017-09) Gözü, ErmanForce modeling based on process input parameters is usually considered as the first step in process modeling. Predicting process forces in micromilling is dif- ficult due to complex interaction between the cutting edge and the work material, size effect, and process dynamics. This study describes the application of Bayesian inference to identify force coefficients in the micromilling process. The Metropolis-Hastings (MH) algorithm Markov chain Monte Carlo (MCMC) approach has been used to identify probability distributions of cutting, edge, and ploughing force coefficients based on experimental measurements and a mechanistic model of micromilling. The Bayesian inference scheme allows for predicting the upper and lower limits of micromilling forces, providing useful information about stability boundary calculations and robust process optimization. In the first part, experiments are performed to investigate the in uence of micromilling process parameters on machining forces, tool edge condition, and surface texture. Built-up edge formation is observed to have a significant in uence on the process outputs in micromilling of titanium alloy Ti6Al4V. In the second part, Bayesian inference is applied to model micromilling forces. The effectiveness of employing Bayesian inference in micromilling force modeling considering special machining cases is discussed. In the third part, finite element simulation of machining processes is employed and process outputs are used to update our knowledge about force coefficients. As a result of uncertainty analysis, the mean and standard deviations of the micromilling forces can be estimated. Bayesian inference can be useful since previous evidence or expertise is insufficient, or when obtaining the related information requires costly and time-consuming machining experiments.Item Open Access Uncertainty analysis of force coefficients during micromilling of titanium alloy(Springer, 2017) Gözü, E.; Karpat, Y.Predicting process forces in micromilling is difficult due to complex interaction between the cutting edge and the work material, size effect, and process dynamics. This study describes the application of Bayesian inference to identify force coefficients in the micromilling process. The Metropolis-Hastings (MH) algorithm Markov chain Monte Carlo (MCMC) approach has been used to identify probability distributions of cutting, edge, and ploughing force coefficients based on experimental measurements and a mechanistic model of micromilling. The Bayesian inference scheme allows for predicting the upper and lower limits of micromilling forces, providing useful information about stability boundary calculations and robust process optimization. In the first part of the paper, micromilling experiments are performed to investigate the influence of micromilling process parameters on machining forces, tool edge condition, and surface texture. Under the experimental conditions used in this study, built-up edge formation is observed to have a significant influence on the process outputs in micromilling of titanium alloy Ti6Al4V. In the second part, Bayesian inference was explained in detail and applied to model micromilling force prediction. The force predictions are validated with the experimental measurements. The paper concludes with a discussion of the effectiveness of employing Bayesian inference in micromilling force modeling considering special machining cases.