Browsing by Subject "Magnetoelectronics"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Determination of the in-plane effective mass and quantum lifetime of 2D electrons in AlGaN/GaN based HEMTs(2011) Celik O.; Tiras, E.; Ardali, S.; Lisesivdin, S.B.; Özbay, EkmelMagnetoresistance and Hall resistance measurements have been used to investigate the electronic transport properties of AlGaN/GaN based HEMTs. The Shubnikov-de Haas (SdH) oscillations from magnetoresistance, is obtained by fitting the nonoscillatory component to a polynomial of second degree, and then subtracting it from the raw experimental data. It is shown that only first subband is occupied with electrons. The two-dimensional (2D) carrier density and the Fermi energy with respect to subband energy (EF-E1) have been determined from the periods of the SdH oscillations. The in-plane effective mass (m*) and the quantum lifetime (τq) of electrons have been obtained from the temperature and magnetic field dependencies of the SdH amplitude, respectively. The in-plane effective mass of 2D electrons is in the range between 0.19 m0 and 0.22 m0. Our results for in-plane effective mass are in good agreement with those reported in the literature © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Item Open Access Spin confinement in the superlattices of graphene ribbons(AIP Publishing, 2008) Topsakal, M.; Sevinçli, H.; Çıracı, SalimBased on first-principles calculations, we showed that repeated heterostructures of zigzag graphene nanoribbons of different widths form multiple quantum well structures. Edge states of specific spin directions can be confined in these wells. The electronic and magnetic state of the ribbon can be modulated in real space. In specific geometries, the absence of reflection symmetry causes the magnetic ground state of whole heterostructure to change from antiferromagnetic to ferrimagnetic. These quantum structures of different geometries provide unique features for spintronic applications.