Browsing by Subject "Magnetic Resonance Imaging"
Now showing 1 - 15 of 15
- Results Per Page
- Sort Options
Item Open Access Accelerated phase-cycled SSFP imaging with compressed sensing(Institute of Electrical and Electronics Engineers Inc., 2015) Çukur, T.Balanced steady-state free precession (SSFP) imaging suffers from irrecoverable signal losses, known as banding artifacts, in regions of large B0 field inhomogeneity. A common solution is to acquire multiple phase-cycled images each with a different frequency sensitivity, such that the location of banding artifacts are shifted in space. These images are then combined to alleviate signal loss across the entire field-of-view. Although high levels of artifact suppression are viable using a large number of images, this is a time costly process that limits clinical utility. Here, we propose to accelerate individual acquisitions such that the overall scan time is equal to that of a single SSFP acquisition. Aliasing artifacts and noise are minimized by using a variable-density random sampling pattern in k-space, and by generating disjoint sampling patterns for separate acquisitions. A sparsity-enforcing method is then used for image reconstruction. Demonstrations on realistic brain phantom images, and in vivo brain and knee images are provided. In all cases, the proposed technique enables robust SSFP imaging in the presence of field inhomogeneities without prolonging scan times. © 2014 IEEE.Item Open Access Bimodal interventional instrument markers for magnetic particle imaging and magnetic resonance imaging—a proof-of-concept study(MDPI, 2022-05-02) Wegner, Franz; Lüdtke-Buzug, Kerstin; Cremers, Sjef; Friedrich, Thomas; Sieren, Malte M.; Haegele, Julian; Koch, Martin A.; Borm, Paul; Buzug, Thorsten M.; Barkhausen, Joerg; Ahlborg, Mandy; Sarıtaş, Emine ÜlküThe purpose of this work was to develop instrument markers that are visible in both magnetic particle imaging (MPI) and magnetic resonance imaging (MRI). The instrument markers were based on two different magnetic nanoparticle types (synthesized in-house KLB and commercial Bayoxide E8706). Coatings containing one of both particle types were fabricated and measured with a magnetic particle spectrometer (MPS) to estimate their MPI performance. Coatings based on both particle types were then applied on a segment of a nonmetallic guidewire. Imaging experiments were conducted using a commercial, preclinical MPI scanner and a preclinical 1 tesla MRI system. MPI image reconstruction was performed based on system matrices measured with dried KLB and Bayoxide E8706 coatings. The bimodal markers were clearly visible in both methods. They caused circular signal voids in MRI and areas of high signal intensity in MPI. Both the signal voids as well as the areas of high signal intensity were larger than the real marker size. Images that were reconstructed with a Bayoxide E8706 system matrix did not show sufficient MPI signal. Instrument markers with bimodal visibility are essential for the perspective of monitoring cardiovascular interventions with MPI/MRI hybrid systems. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.Item Open Access Choroid Plexus Papillomas in two siblings: Case report(2009) Okay, O.; Dağlıoğlu, E.; Yakıcıer, Cengiz; Üren, Deniz; Dalgıç, A.; Ergüngör, F.Choroid plexus papilloma (CPP) is a rare, benign epithelial brain tumor of the nervous system seen particularly in infants. Familial cases are extremely uncommon. Some other form of malignant tumors was noted in the relatives of patients with CPPs, and some genetic defects regarding this coincidence were reported in the literature. These neoplasms are occasionally bilateral and hydrocephalus is an associated sign in most of the cases. We report three lateral ventricle CPPs in two siblings, at the age of 7 month and 2 years respectively. All tumors were resected with parietotemporal craniotomy and a superior temporal sulcus approach to the lateral ventricle. To avoid a concomitant need of ventriculoperitoneal shunt insertion, external ventricular drainage was inserted for a week in the postoperative period relieving symptoms of hydrocephalus. Search for a hereditary defect in the p53 gene of the second infant (7 months old) revealed no mutation. Postoperative courses were uneventful and the patients were followed for three years without any recurrence. Bilateral CPPS are rare and unusual in two siblings. A genetic predisposition such as the p53 mutation should be investigated in bilateral CPPs in particular.Item Open Access Convection-reaction equation based magnetic resonance electrical properties tomography (cr-MREPT)(Institute of Electrical and Electronics Engineers Inc., 2014) Hafalir, F. S.; Oran, O. F.; Gurler, N.; Ider, Y. Z.Images of electrical conductivity and permittivity of tissues may be used for diagnostic purposes as well as for estimating local specific absorption rate distributions. Magnetic resonance electrical properties tomography (MREPT) aims at noninvasively obtaining conductivity and permittivity images at radio-frequency frequencies of magnetic resonance imaging systems. MREPT algorithms are based on measuring the B1 field which is perturbed by the electrical properties of the imaged object. In this study, the relation between the electrical properties and the measured B1 field is formulated for the first time as a well-known convection-reaction equation. The suggested novel algorithm, called 'cr-MREPT,' is based on the solution of this equation on a triangular mesh, and in contrast to previously proposed algorithms, it is applicable in practice not only for regions where electrical properties are relatively constant but also for regions where they vary. The convective field of the convection-reaction equation depends on the spatial derivatives of the B1 field, and in the regions where its magnitude is low, a spot-like artifact is observed in the reconstructed electrical properties images. For eliminating this artifact, two different methods are developed, namely 'constrained cr-MREPT' and 'double-excitation cr-MREPT.' Successful reconstructions are obtained using noisy and noise-free simulated data, and experimental data from phantoms.Item Open Access Design of a novel MRI compatible manipulator for image guided prostate interventions(IEEE, 2005-02) Krieger, A.; Susil, R. C.; Ménard, C.; Coleman, J. A.; Fichtinger, G.; Atalar, Ergin; Whitcomb, L. L.This paper reports a novel remotely actuated manipulator for access to prostate tissue under magnetic resonance imaging guidance (APT-MRI) device, designed for use in a standard high-field MRI scanner. The device provides three-dimensional MRI guided needle placement with millimeter accuracy under physician control. Procedures enabled by this device include MRI guided needle biopsy, fiducial marker placements, and therapy delivery. Its compact size allows for use in both standard cylindrical and open configuration MRI scanners. Preliminary in vivo canine experiments and first clinical trials are reported.Item Open Access Development of image reconstruction algorithms for three dimensional magnetic resonance-electrical impedance tomography(2003) Onart, SerkanThe electrical resistivity of biological tissues differ among various tissue types. Human body has a large resistivity contrast between a wide range of its tissues. The aim of this study is to reconstruct conductivity images of three dimensional objects with higher resolution and better accuracy than existing conductivity imaging techniques. In order to achieve our goal, we proposed a technique named as Magnetic Resonance - Electrical Impedance Tomography (MR-EIT) which combines the peripheral voltage measurements of classical Electrical Impedance Tomography (EIT) technique with magnetic flux density measurements acquired using a Magnetic Resonance Imaging (MRI) scanner. Five reconstruction algorithms are proposed and computer simulations are made. The proposed algorithms fall in two categories those that utilize current density data and those that utilize magnetic flux density data directly. The first group of algorithms get the current density data from magnetic flux density by Ampere’s law. For calculation of current density with Ampere’s law, we need to all three components of magnetic flux density but that is not possible to get all of them in one measurement phase. Total of three measurement phases are needed for getting all of them but this is not practical because, for measurement of each component the object has to be rotated appropriately in the MRI scanner. The algorithms in the second group suggest an exit to this difficulty and achieve the conductivity reconstruction by using only the data which was acquired in one measurement phase. As can be seen in the results, conductivity reconstruction of three dimensional objects on tomographic planes are made successfully with all of the algorithms. They also work fine against to the measurement noise up to an acceptable level.Item Open Access Functional subdomains within human FFA(Society for Neuroscience, 2013) Çukur, T.; Huth, A. G.; Nishimoto, S.; Gallant, J. L.The fusiform face area (FFA) is a well-studied human brain region that shows strong activation for faces. In functional MRI studies, FFA is often assumed to be a homogeneous collection of voxels with similar visual tuning. To test this assumption, we used natural movies and a quantitative voxelwise modeling and decoding framework to estimate category tuning profiles for individual voxels within FFA. We find that the responses in most FFA voxels are strongly enhanced by faces, as reported in previous studies. However, we also find that responses of individual voxels are selectively enhanced or suppressed by a wide variety of other categories and that these broader tuning profiles differ across FFA voxels. Cluster analysis of category tuning profiles across voxels reveals three spatially segregated functional subdomains within FFA. These subdomains differ primarily in their responses for nonface categories, such as animals, vehicles, and communication verbs. Furthermore, this segregation does not depend on the statistical threshold used to define FFA from responses to functional localizers. These results suggest that voxels within FFA represent more diverse information about object and action categories than generally assumed. © 2013 the authors.Item Open Access Malignant-lesion segmentation using 4D co-occurrence texture analysis applied to dynamic contrast-enhanced magnetic resonance breast image data(2007) Woods, B.J.; Clymer, B.D.; Kurc, T.; Heverhagen J.T.; Stevens, R.; Orsdemir, A.; Bulan O.; Knopp, M.V.Purpose: To investigate the use of four-dimensional (4D) co-occurrence-based texture analysis to distinguish between nonmalignant and malignant tissues in dynamic contrast-enhanced (DCE) MR images. Materials and Methods: 4D texture analysis was performedon DCE-MRI data sets of breast lesions. A model-free neural network-based classification system assigned each voxel a "nonmalignant" or "malignant" label based on the textural features. The classification results were compared via receiver operating characteristic (ROC) curve analysis with the manual lesion segmentation produced by two radiologists (observers 1 and 2). Results: The mean sensitivity and specificity of the classifier agreed with the mean observer 2 performance when compared with segmentations by observer 1 for a 95% confidence interval, using a two-sided t-test with α = 0.05. The results show that an area under the ROC curve (Az) of 0.99948, 0.99867, and 0.99957 can be achieved by comparing the classifier vs. observer 1, classifier vs. union of both observers, and classifier vs. intersection of both observers, respectively. Conclusion: This study shows that a neural network classifier based on 4D texture analysis inputs can achieve a performance comparable to that achieved by human observers, and that further research in this area is warranted. © 2007 Wiley-Liss, Inc.Item Open Access Manganese doped fluorescent paramagnetic nanocrystals for dual-modal imaging(Wiley-VCH Verlag, 2014) Sharma, V. K.; Gokyar, S.; Kelestemur, Y.; Erdem, T.; Unal, E.; Demir, Hilmi VolkanIn this work, dual-modal (fluorescence and magnetic resonance) imaging capabilities of water-soluble, low-toxicity, monodisperse Mn-doped ZnSe nanocrystals (NCs) with a size (6.5 nm) below the optimum kidney cutoff limit (10 nm) are reported. Synthesizing Mn-doped ZnSe NCs with varying Mn2+ concentrations, a systematic investigation of the optical properties of these NCs by using photoluminescence (PL) and time resolved fluorescence are demonstrated. The elemental properties of these NCs using X-ray photoelectron spectroscopy and inductive coupled plasma-mass spectroscopy confirming Mn2+ doping is confined to the core of these NCs are also presented. It is observed that with increasing Mn2+ concentration the PL intensity first increases, reaching a maximum at Mn2+ concentration of 3.2 at% (achieving a PL quantum yield (QY) of 37%), after which it starts to decrease. Here, this high-efficiency sample is demonstrated for applications in dual-modal imaging. These NCs are further made water-soluble by ligand exchange using 3-mercaptopropionic acid, preserving their PL QY as high as 18%. At the same time, these NCs exhibit high relaxivity (≈2.95 mM-1 s-1) to obtain MR contrast at 25°C, 3 T. Therefore, the Mn2+ doping in these water-soluble Cd-free NCs are sufficient to produce contrast for both fluorescence and magnetic resonance imaging techniques.Item Open Access Motion artifact reduction techniques in magnetic resonance imaging(1991) Atalar, ErginIt is shown that the expansion/shrinkage and rotational motions of the body cause phase and amplitude distortions and non-rectangular sampling over the A:-domain. If these distortions are not compensated then the reconstructed image will suffer from ''the motion artifact'. The mathematical relation between motion and motion artifact is given. If the motion of the body is known, it is possible to obtain motion artifact free images. The motion is estimated either by using the information in the acquired data or by direct measurement. These estimates and the relation between motion and artifact are used to compensate the phase and amplitude distortions. Using the non-rectangular samples over the ¿-domain the rectangular samples are obtain by the aid of the singular value decomposition method. And finally, the inverse Fourier transform of these calculated samples gives the motion artifact free image. The proposed method is tested by simulations. For the estimation of the motion, two methods are proposed and tested. The first method is an iterative image reconstruction method. The second one uses the navigator echoes to obtain the amount of motion.Item Open Access Neuro-ophthalmologic findings in humans with quadrupedal locomotion(2012) Sarac O.; Gulsuner, S.; Yildiz-Tasci, Y.; Ozcelik, T.; Kansu, T.Purpose: To report the neuro-ophthalmologic findings in four patients from the same family with cerebellar ataxia, mental retardation, and dysequilibrium syndrome (CAMRQ)2 associated with quadrupedal locomotion. Method: A case series. Results: All four patients carry the private missense mutation, WDR81 p.P856L. The brain Magnetic Resonance Imaging (MRI) of these patients revealed morphological abnormalities including mild hypoplasia of the corpus callosum, and atrophy of superior, middle, and inferior peduncles of the cerebellum. All patients had down-beat nystagmus, while two male patients additionally had bilateral temporal disc pallor along with ring-shaped macular atrophy. Conclusions: The neuro-ophthalmic examination in CAMRQ2 revealed downbeat nystagmus in all patients, and temporal disc pallor and macular atrophy in two patients. It remains to be determined whether these findings are consistent in other forms of CAMRQ with mutations in VLDLR or CA8. © 2012 Informa Healthcare USA, Inc.Item Open Access A Respiratory Motion Artifact Reduction Method in Magnetic Resonance Imaging of the Chest(1991) Atalar, Ergin; Onural, L.A respiratory motion artifact reduction method in magnetic resonance imaging is presented. The method is an image reconstruction algorithm based on the assumption that the respiratory motion of the chest is linear in space and arbitrary in time. The linear respiratory motion causes phase distortion on the MR data. In addition, as a result of this motion, the MR data will be the samples of the Fourier transform of the spin density on a nonrectangular grid. In image reconstruction, before taking the inverse Fourier transform, the phase distortion is compensated and the rectangular samples are interpolated from the existing nonrectangular samples. Using this method, a significant amount of motion artifact suppression is achieved with a rough knowledge on the motion. In addition, it is demonstrated that the respiratory motion model parameters can be estimated using the information hidden in the motion artifacts. © 1991 IEEE.Item Open Access Safety of metallic implants in magnetic resonance imaging(2005) Ferhanoğlu, OnurMagnetic Resonance Imaging (MRI) is safe only if we take safety precautions. In the presence of a metallic implant inside the body, three types of magnetic fields encountered in MRI (Static magnetic field, radiofrequency field, gradient field) may become the sources of safety problems. In this thesis, temperature increase created by a pacemaker under MRI is investigated. Electromagnetic simulations are performed, in-vivo, phantom experiments are conducted and finally bioheat equation is solved to find the corresponding temperature increase. Using this temperature increase the input power can be limited to ensure safe scans. MRI compatible lead design is the essential innovation of this thesis which is directly applicable to any kind of metallic, wire shaped interventional MRI device.Item Open Access System for MR image-guided prostate interventions: Canine study(Radiological Society of North America, Inc., 2003) Susil, R. C.; Krieger, A.; Derbyshire, J. A.; Tanacs, A.; Whitcomb, L. L.; Fichtinger, G.; Atalar, ErginThe purpose of this study was to demonstrate the use of a transrectal system that enables precise magnetic resonance (MR) image guidance and monitoring of prostate interventions. The system used a closed-bore 1.5-T MR imaging unit and enables one to take advantage of the higher signal-to-noise ratio achieved with traditional magnet designs, which is crucial for accurate targeting and monitoring of prostate interventions. In the first of the four canine studies, reliable needle placement, with all needles placed within 2 mm of the desired target site, was achieved. In two other studies, MR imaging was used to monitor distribution of injected contrast agent solution (gadopentetate dimeglumine mixed with trypan blue dye) in and around the prostate, thereby confirming that solution had been delivered to the desired tissue and also detecting faulty injections. In the final study, accurate placement and MR imaging of brachytherapy seeds in the prostate were demonstrated. The described system provides a flexible platform for a variety of minimally invasive MR image-guided therapeutic and diagnostic prostate interventions. © RSNA, 2003.Item Open Access Tracking the position and rotational orientation of a catheter using a transmit array system(IEEE, 2013) Celik, H.; Mahcicek, D. I.; Senel, O.; Wright, G. A.; Atalar, ErginA new method for detecting the rotational orientation and tracking the position of an inductively coupled radio frequency (ICRF) coil using a transmit array system is proposed. The method employs a conventional body birdcage coil, but the quadrature hybrid is eliminated so that the two excitation channels can be used separately. The transmit array system provides RF excitations such that the body birdcage coil creates linearly polarized and changing RF pulses instead of a conventional rotational forward-polarized excitation. The receive coils and their operations are not modified. Inductively coupled RF coils are constructed on catheters for detecting rotational orientation and for tracking purposes. Signals from the anatomy and from tissue close to the ICRF coil are different due to the new RF excitation scheme: the ICRF coil can be separated from the anatomy in real time, and after doing so, a color-coded image is reconstructed. More importantly, this novel method enables a real-time calculation of the absolute rotational orientation of an ICRF coil constructed on a catheter. © 1982-2012 IEEE.