Browsing by Subject "Low costs"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Conversion of wooden structures into porous SiC with shape memory synthesis(2011) Dhiman, R.; Petrunin V.; Rana, K.; Morgen P.Synthesis of structured silicon carbide materials can be accomplished using wooden materials as the carbon source, with various silicon impregnation techniques. We have explored the low cost synthesis of SiC by impregnation of carbon from wood with SiO gas at high temperatures, which largely retains the structure of the starting wood (shape memory synthesis). Suitably structured, porous SiC could prove to be an important type of catalyst support material. Shape memory synthesis (SMS) has earlier been tried on high surface area carbon materials. Here we have made an extensive study of SMS on carbon structures obtained from different types of wood. © 2011 Elsevier Ltd and Techna Group S.r.l.Item Open Access An efficient computation model for coarse grained reconfigurable architectures and its applications to a reconfigurable computer(IEEE, 2010-07) Atak, Oğuzhan; Atalar, AbdullahThe mapping of high level applications onto the coarse grained reconfigurable architectures (CGRA) are usually performed manually by using graphical tools or when automatic compilation is used, some restrictions are imposed to the high level code. Since high level applications do not contain parallelism explicitly, mapping the application directly to CGRA is very difficult. In this paper, we present a middle level Language for Reconfigurable Computing (LRC). LRC is similar to assembly languages of microprocessors, with the difference that parallelism can be coded in LRC. LRC is an efficient language for describing control data flow graphs. Several applications such as FIR, multirate, multichannel filtering, FFT, 2D-IDCT, Viterbi decoding, UMTS and CCSDC turbo decoding, Wimax LDPC decoding are coded in LRC and mapped to the Bilkent Reconfigurable Computer with a performance (in terms of cycle count) close to that of ASIC implementations. The applicability of the computation model to a CGRA having low cost interconnection network has been validated by using placement and routing algorithms. © 2010 IEEE.Item Open Access İnsan hareketlerinin PIR-sensör tabanlı bir sistemle sınıflandırılması(IEEE, 2008-04) Urfalıoğlu, Onay; Soyer, Emin B.; Töreyin, B. Uğur; Çetin, A. EnisBu bildiride, tek bir pasif kızılberisi sensörü (PIR) kullanarak beş farklı insan hareketi ve bir hareketsiz arkaplan gürültüsünden oluşan toplam 6 çeşit olay için bir sınıflandırma yöntemi önerilmiştir. Otomatik olay sınıflandırma sistemleri, dinamik süreçler barındıran ortamlar için yeni uygulamalara fırsat vermektedir. Olay sınıflandırması, herhangi bir sensör ya da sensör dizisinden gelen işaretlerin analiz edilerek, belirli bir olaya ait dinamik süreçle eşleştirilmesi olarak tanımlanabilir. Genelde, insan etkinliklerinin izlenmesi uygulamalarında kamera ve mikrofonlar kullanılmaktadır. Bir alternatif veya bir tümleyici yaklaşım olarak, bahsi geçen uygulamalarda PIR sensörleri de kullanılabilir. Bu bildiride, olay sınıflandırılması için Bayes yaklaşımına dayalı olan şartlı Gauss karışım modeli (CGMM) kullanımı önerilmektedir. Deneysel çalışmalarda, bu yaklaşımın başarılı olduğu görülmüştür.Item Open Access Matrix density effect on morphology of germanium nanocrystals embedded in silicon dioxide thin films(Materials Research Society, 2011) Alagoz, A. S.; Genisel, M. F.; Foss, Steinar; Finstad, T. G.; Turan, R.Flash type electronic memories are the preferred format in code storage at complex programs running on fast processors and larger media files in portable electronics due to fast write/read operations, long rewrite life, high density and low cost of fabrication. Scaling limitations of top-down fabrication approaches can be overcome in next generation flash memories by replacing continuous floating gate with array of nanocrystals. Germanium (Ge) is a good candidate for nanocrystal based flash memories due its small band gap. In this work, we present effect of silicon dioxide (SiO 2) host matrix density on Ge nanocrystals morphology. Low density Ge+SiO 2 layers are deposited between high density SiO 2 layers by using off-angle magnetron sputter deposition. After high temperature post-annealing, faceted and elongated Ge nanocrystals formation is observed in low density layers. Effects of Ge concentration and annealing temperature on nanocrystal morphology and mean size were investigated by using transmission electron microscopy. Positive correlation between stress development and nanocrystal size is observed at Raman spectroscopy measurements. We concluded that non-uniform stress distribution on nanocrystals during growth is responsible from faceted and elongated nanocrystal morphology.Item Open Access Nonlinearity engineering of mode-locked fiber lasers: Similariton and soliton-similariton lasers(IEEE, 2011) İlday F. Ömer; Öktem, Bülent; Ülgüdür, CoşkunFiber lasers are attractive with their simplicity, high powers and low cost. However, propagation of short pulses in optical fiber leads to nonlinear effects, which limit the technical performance. These effects drive rich dynamics, which is interesting from a fundamental perspective. The nonlinear waves community has unraveled the fascinating world of solitons and similaritons through experiments in fibers. This paper overviews the recent development of the soliton-similariton laser. The original similariton laser was the first to work with nonlinear effects, rather than minimizing or compensating them. In the soliton-similariton laser, the propagation is strongly nonlinear everywhere. © 2011 IEEE.Item Open Access Plasmonic gratings for enhanced near infrared sensitivity of Silicon based Schottky photodetectors(IEEE, 2011) Polat, Kazım Gürkan; Aygun, Levent Erdal; Okyay, Ali KemalSchottky photodetectors have been intensively investigated due to their high speeds, low device capacitances, and sensitivity in telecommunication standard bands, in the 0.8μm to 1.5μm wavelength range. Due to extreme cost advantage of Silicon over compound semiconductors, and seamless integration with VLSI circuits, metal-Silicon Schottky photodetectors are attractive low cost alternatives to InGaAs technology. However, efficiencies of Schottky type photodetectors are limited due to thin absorption region. Previous efforts such as resonant cavities increase the sensitivity using optical techniques, however their integration with VLSI circuits is difficult. Therefore, there is a need for increasing Schottky detector sensitivity, in a VLSI compatible fashion. To address this problem, we design plasmonic grating structures to increase light absorption at the metal-Silicon Schottky interface. There are earlier reports of plasmonic structures to increase Schottky photodetector sensitivity, with a renowned interest in the utilization of plasmonic effects to improve the absorption characteristics of metal-semiconductor interfaces. In this work, we report the design, fabrication and characterization of Gold-Silicon Schottky photodetectors with enhanced absorption in the near infrared region. © 2011 IEEE.