Browsing by Subject "Loss tangent"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Effect of processing options on ultra-low-loss lead-magnesium-niobium titanate thin films for high density capacitors(Elsevier, 2013) Chen W.; McCarthy, K.G.; O'Brien, S.; Çopuroǧlu, Mehmet; Cai, M.; Winfield, R.; Mathewson, A.This work studies the impact of annealing temperatures on PMNT (lead-magnesium niobate-lead titanate, Pb(Mg0.33Nb 0.67)0.65Ti0.35O3) thin films grown on a silicon substrate. The electrical properties of the thin films, such as dielectric constant and loss tangent, are shown to depend strongly on the annealing temperature, with the best electrical properties being achieved at the highest annealing temperature. It is seen that the perovskite phase is highest in the sample annealed at 750 C indicating that a relatively high temperature is necessary for complete transition of PMNT to the perovskite phase. The sample annealed at 400 C exhibits the lowest loss tangent of approximately 0.007 at a frequency of 1 MHz. © 2012 Elsevier B.V.Item Open Access Frequency and temperature dependence of the dielectric and AC electrical conductivity in (Ni/Au)/AlGaN/AlN/GaN heterostructures(Elsevier, 2010) Arslan, E.; Şafak, Y.; Taşçioğlu, I.; Uslu, H.; Özbay, EkmelThe dielectric properties and AC electrical conductivity (σ ac)of the (Ni/Au)/Al 0.22Ga 0.78N/AlN/GaN heterostructures, with and without the SiNx passivation, have been investigated by capacitance-voltage and conductance-voltage measurements in the wide frequency (5kHz-5 MHz) and temperature (80-400 K) range. The experimental values of the dielectric constant (ε'), dielectric loss (ε' '), loss tangent (tand), σ ac and the real and imaginary part of the electric modulus (M' and M' ') were found to be a strong function of frequency and temperature. A decrease in the values of ε' and ε' ' was observed, in which they both showed an increase in frequency and temperature. The values of M' and M' ' increase with increasing frequency and temperature. The σ ac increases with increasing frequency, while it decreases with increasing temperature. It can be concluded, therefore, that the interfacial polarization can occur more easily at low frequencies and temperatures with the number of interface states density located at the metal/semiconductor interface. It contributes to the e' and σ ac. © 2009 Elsevier B.V. All rights reserved.