Browsing by Subject "Long non-coding RNA"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Colon cancer associated transcript-1 (CCAT1) expression in adenocarcinoma of the stomach(Ivyspring International Publisher, 2015) Mizrahi, I.; Mazeh, H.; Grinbaum, R.; Beglaibter, N.; Wilschanski, M.; Pavlov, V.; Adileh, M.; Stojadinovic, A.; Avital, I.; Gure, A. O.; Halle, D.; Nissan, A.Background: Long non-coding RNAs (lncRNAs) have been shown to have functional roles in cancer biology and are dys-regulated in many tumors. Colon Cancer Associated Transcript -1 (CCAT1) is a lncRNA, previously shown to be significantly up-regulated in colon cancer. The aim of this study is to determine expression levels of CCAT1 in gastric carcinoma (GC). Methods: Tissue samples were obtained from patients undergoing resection for gastric carcinoma (n=19). For each patient, tumor tissue and normal appearing gastric mucosa were taken. Normal gastric tissues obtained from morbidly obese patients, undergoing laparoscopic sleeve gastrectomy served as normal controls (n=19). A human gastric carcinoma cell line (AGS) served as positive control. RNA was extracted from all tissue samples and CCAT1 expression was analyzed using quantitative real time-PCR (qRT-PCR). Results: Low expression of CCAT1 was identified in normal gastric mucosa samples obtained from morbidly obese patients [mean Relative Quantity (RQ) = 1.95±0.4]. AGS human gastric carcinoma cell line showed an elevated level of CCAT1 expression (RQ=8.02). Expression levels of CCAT1 were approximately 10.8 fold higher in GC samples than in samples taken from the negative control group (RQ=21.1±5 vs. RQ=1.95±0.4, respectively, p<0.001). Interestingly, CCAT1 expression was significantly overexpressed in adjacent normal tissues when compared to the negative control group (RQ = 15.25±2 vs. RQ=1.95±0.4, respectively, p<0.001). Tissues obtained from recurrent GC cases showed the highest expression levels (RQ = 88.8±31; p<0.001). Expression levels increased with tumor stage (T4- 36.4±15, T3- 16.1±6, T2- 4.7±1), however this did not reach statistical significance (p=0.2). There was no difference in CCAT1 expression between intestinal and diffuse type GC (RQ=22.4±7 vs. 22.4±16, respectively, p=0.9). Within the normal gastric tissue samples, no significant difference in CCAT1 expression was observed in helicobacter pylori negative and positive patients (RQ= 2.4±0.9 vs. 0.93±0.2, respectively, p=0.13). Conclusion: CCAT1 is up-regulated in gastric cancer, and may serve as a potential bio-marker for early detection and surveillance.Item Open Access Detection of a long non-coding RNA (CCAT1) in living cells and human adenocarcinoma of colon tissues using FIT–PNA molecular beacons(Elsevier Ireland Ltd., 2014-09-28) Kam, Y.; Rubinstein, A.; Naik, S.; Djavsarov, I.; Halle, D.; Ariel, I.; Gure, A. O.; Stojadinovic, A.; Pan, H. G.; Tsivin, V.; Nissan, A.; Yavin, E.Although the function and mechanism of action of long non-coding RNAs (lncRNA) is still not completely known, studies have shown their potential role in the control of gene expression and regulation, in cellular proliferation and invasiveness at the transcriptional level via multiple mechanisms. Recently, colon cancer associated transcript 1 (CCAT1) lncRNA was found to be expressed in colorectal cancer (CRC) tumors but not in normal tissue. This study aimed to study the ability of a CCAT1-specific peptide nucleic acid (PNA) based molecular beacons (TO-PNA-MB) to serve as a diagnostic probe for in vitro, ex vivo, and in situ (human colon biopsies) detection of CRC. The data showed enhanced fluorescence upon in vitro hybridization to RNA extracted from CCAT1 expressing cells (HT-29, SW-480) compared to control cells (SK-Mel-2). Uptake of TO-PNA-MBs into cells was achieved by covalently attaching cell penetrating peptides (CPPs) to the TO-PNA-MB probes. In situ hybridization of selected TO-PNA-MB in human CRC specimens was shown to detect CCAT1 expression in all (4/4) subjects with pre-cancerous adenomas, and in all (8/8) patients with invasive adenocarcinoma (penetrating the bowel wall) tumors. The results showed that CCAT1 TO-PNA-MB is a powerful diagnostic tool for the specific identification of CRC, suggesting that with the aid of an appropriate pharmaceutical vehicle, real time in vivo imaging is feasible. TO-PNA-MB may enable identifying occult metastatic disease during surgery, or differentiating in real time in vivo imaging, between benign and malignant lesions.Item Open Access Role of non-coding RNAs as novel biomarkers for detection of colorectal cancer progression through interaction with the cell signaling pathways(Elsevier, 2020) Esmaeili, M.; Keshani, M.; Vakilian, M.; Esmaeili, M.; Peymani, M.; Forootan, F. S.; Chau, Tieu Lan; Göktuna, Serkan İsmail; Zaker, S. R.; Esfahani, M. H. N.; Ghaedi, K.Colorectal cancer (CRC) is one of the most common types of cancer which affects the colon and the rectum. Approximately one third of annual CRC mortality occurs due to the late detection of this type of cancer. Therefore, there is an urgent need for more powerful diagnostic and prognostic tools for identification and treatment of colorectal tumorigenesis. Non-coding RNAs (ncRNAs) have been implicated in the pathology of CRC and also linked to metastasis, proliferation, differentiation, migration, angiogenesis and apoptosis in numerous cancers. Recently, attention has turned towards ncRNAs as specific targets for diagnosis, prognosis and treatment of various types of cancers, including CRC. In this review, we have tried to outline the roles of ncRNAs, and their involvement in signaling pathways responsible for the progression of CRC.