Browsing by Subject "Least-mean-square methods"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Fire detection in video using LMS based active learning(Springer, 2009) Günay, O.; Taşdemir K.; Töreyin, B. U.; Çetin, A. EnisIn this paper, a video based algorithm for fire and flame detection is developed. In addition to ordinary motion and color clues, flame flicker is distinguished from motion of flame colored moving objects using Markov models. Irregular nature of flame boundaries is detected by performing temporal wavelet analysis using Hidden Markov Models as well. Color variations in fire is detected by computing the spatial wavelet transform of moving fire-colored regions. Boundary of flames are represented in wavelet domain and irregular nature of the boundaries of fire regions is also used as an indication of the flame flicker. Decisions from sub-algorithms are linearly combined using an adaptive active fusion method. The main detection algorithm is composed of four sub-algorithms (i) detection of fire colored moving objects, (ii) temporal, and (iii) spatial wavelet analysis for flicker detection and (iv) contour analysis of fire colored region boundaries. Each algorithm yields a continuous decision value as a real number in the range [-1, 1] at every image frame of a video sequence. Decision values from sub-algorithms are fused using an adaptive algorithm in which weights are updated using the least mean square (LMS) method in the training (learning) stage.Item Open Access Video based wildfire detection at night(ELSEVIER, 2009-05-06) Günay, O.; Taşdemir K.; Töreyin, B. U.; Çetin, A. EnisThere has been an increasing interest in the study of video based fire detection algorithms as video based surveillance systems become widely available for indoor and outdoor monitoring applications. A novel method explicitly developed for video based detection of wildfires at night (in the dark) is presented in this paper. The method comprises four sub-algorithms: (i) slow moving video object detection, (ii) bright region detection, (iii) detection of objects exhibiting periodic motion, and (iv) a sub-algorithm interpreting the motion of moving regions in video. Each of these sub-algorithms characterizes an aspect of fire captured at night by a visible range PTZ camera. Individual decisions of the sub-algorithms are combined together using a least-mean-square (LMS) based decision fusion approach, and fire/nofire decision is reached by an active learning method.