Browsing by Subject "Iterative solutions"
Now showing 1 - 16 of 16
- Results Per Page
- Sort Options
Item Open Access Analysis of double-negative materials with surface integral equations and the multilevel fast multipole algorithm(IEEE, 2011) Ergül O.; Gürel, LeventWe present a fast and accurate analysis of double-negative materials (DNMs) with surface integral equations and the multilevel fast multipole algorithm (MLFMA). DNMs are commonly used as simplified models of metamaterials at resonance frequencies and are suitable to be formulated with surface integral equations. However, realistic metamaterials and their models are usually very large with respect to wavelength and their accurate solutions require fast algorithms, such as MLFMA. We consider iterative solutions of DNMs with MLFMA and we investigate the accuracy and efficiency of solutions when DNMs are formulated with two recently developed formulations, namely, the combined tangential formulation (CTF) and the electric and magnetic current combined-field integral equation (JMCFIE). Numerical results on canonical objects are consistent with previous results in the literature on ordinary objects. © 2011 IEEE.Item Open Access Analysis of Lossy Dielectric Objects with the Multilevel Fast Multipole Algorithm(IEEE, 2011) Ergul, O.; Gurel, LeventRigorous solutions of electromagnetics problems involving lossy dielectric objects are considered. Problems are formulated with two recently developed formulations, namely, the combined-tangential formulation (CTF) and the electric and magnetic current combined-field integral equation (JMCFIE), and solved iteratively using the multilevel fast multipole algorithm (MLFMA). Accuracy and efficiency of solutions are compared for different objects and conductivity values. We show that iterative solutions of CTF are significantly accelerated as the conductivity increases and CTF becomes a good alternative to JMCFIE in terms of efficiency. Considering also its high accuracy, CTF seems to be a suitable formulation for the analysis of lossy dielectric objects.Item Open Access Analysis of photonic-crystal problems with MLFMA and approximate Schur preconditioners(IEEE, 2009-07) Ergül, Özgür; Malas, Tahir; Kılınç, Seçil; Sarıtaş, Serkan; Gürel, LeventWe consider fast and accurate solutions of electromagnetics problems involving three-dimensional photonic crystals (PhCs). Problems are formulated with the combined tangential formulation (CTF) and the electric and magnetic current combined-field integral equation (JMCFIE) discretized with the Rao-Wilton-Glisson functions. Matrix equations are solved iteratively by the multilevel fast multipole algorithm. Since PhC problems are difficult to solve iteratively, robust preconditioning techniques are required to accelerate iterative solutions. We show that novel approximate Schur preconditioners enable efficient solutions of PhC problems by reducing the number of iterations significantly for both CTF and JMCFIE. ©2009 IEEE.Item Open Access Approximate Schur preconditioners for efficient solutions of dielectric problems formulated with surface integral equations(IEEE, 2009-07) Malas, Tahir; Gürel, LeventWe propose direct and iterative versions of approximate Schur preconditioners to increase robustness and efficiency of iterative solutions of dielectric problems formulated with surface integral equations. The performance of these preconditioners depends on the availability of fast and approximate solutions to reduced matrix systems. We show that sparse-approximate-inverse techniques provide a suitable mechanism for this purpose. The proposed preconditioners are demonstrated to significantly improve convergence rates of dielectric problems formulated with two different surface integral equations. ©2009 IEEE.Item Open Access Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm(Institute of Electrical and Electronics Engineers, 2009) Ergül, Özgür; Gürel, LeventWe consider fast and accurate solutions of scattering problems involving increasingly large dielectric objects formulated by surface integral equations. We compare various formulations when the objects are discretized with Rao-Wilton-Glisson functions, and the resulting matrix equations are solved iteratively by employing the multilevel fast multipole algorithm (MLFMA). For large problems, we show that a combined-field formulation, namely, the electric and magnetic current combined-field integral equation (JMCFIE), requires fewer iterations than other formulations within the context of MLFMA. In addition to its efficiency, JMCFIE is also more accurate than the normal formulations and becomes preferable, especially when the problems cannot be solved easily with the tangential formulations.Item Open Access Computational analysis of complicated metamaterial structures using MLFMA and nested preconditioners(IEEE, 2007-11) Ergül, Özgür; Malas, Tahir; Yavuz, Ç; Ünal, Alper; Gürel, LeventWe consider accurate solution of scattering problems involving complicated metamaterial (MM) structures consisting of thin wires and split-ring resonators. The scattering problems are formulated by the electric-field integral equation (EFIE) discretized with the Rao-Wilton- Glisson basis functions defined on planar triangles. The resulting dense matrix equations are solved iteratively, where the matrix-vector multiplications that are required by the iterative solvers are accelerated with the multilevel fast multipole algorithm (MLFMA). Since EFIE usually produces matrix equations that are ill-conditioned and difficult to solve iteratively, we employ nested preconditioners to achieve rapid convergence of the iterative solutions. To further accelerate the simulations, we parallelize our algorithm and perform the solutions on a cluster of personal computers. This way, we are able to solve problems of MMs involving thousands of unit cells.Item Open Access Effective preconditioners for large integral-equation problems(IET, 2007-11) Malas, Tahir; Ergül, Özgür; Gürel, LeventWe consider effective preconditioning schemes for the iterative solution of integral-equation methods. For parallel implementations, the sparse approximate inverse or the iterative solution of the near-field system enables fast convergence up to certain problem sizes. However, for very large problems, the near-field matrix itself becomes too crude approximation to the dense system matrix and preconditioners generated from the near-field interactions cannot be effective. Therefore, we propose an approximation strategy to the multilevel fast multipole algorithm (MLFMA) to be used as a preconditioner. Our numerical experiments reveal that this scheme significantly outperforms other preconditioners. With the combined effort of effective preconditioners and an efficiently parallelized MLFMA, we are able to solve targets with tens of millions of unknowns in a few hours.Item Open Access Efficient solutions of metamaterial problems using a low-frequency multilevel fast multipole algorithm(2010) Ergül, Özgür; Gürel, LeventWe present fast and accurate solutions of electromagnetics problems involving realistic metamaterial structures using a lowfrequency multilevel fast multipole algorithm (LF-MLFMA). Accelerating iterative solutions using robust preconditioning techniques may not be sufficient to reduce the overall processing time when the ordinary high-frequency MLFMA is applied to metamaterial problems. The major bottleneck, i.e., the low-frequency breakdown, should be eliminated for efficient solutions. We show that the combination of an LF-MLFMA implementation based on the multipole expansion with the sparse-approximate-inverse preconditioner enables efficient and accurate analysis of realistic metamaterial structures. Using the robust LF-MLFMA implementation, we demonstrate how the transmission properties of metamaterial walls can be enhanced with randomlyoriented unit cells.Item Unknown Fast and accurate solutions of extremely large integral-equation problems discretised with tens of millions of unknowns(The Institution of Engineering and Technology, 2007) Gürel, Levent; Ergül, ÖzgürThe solution of extremely large scattering problems that are formulated by integral equations and discretised with tens of millions of unknowns is reported. Accurate and efficient solutions are performed by employing a parallel implementation of the multilevel fast multipole algorithm. The effectiveness of the implementation is demonstrated on a sphere problem containing more than 33 million unknowns, which is the largest integral-equation problem ever solved to our knowledge.Item Unknown Improving iterative solutions of the electric-field integral equation via transformations into normal equations(Taylor and Francis, 2012-04-03) Ergül, Özgür; Gürel, LeventWe consider the solution of electromagnetics problems involving perfectly conducting objects formulated with the electric-field integral equation (EFIE). Dense matrix equations obtained from the discretization of EFIE are solved iteratively by the generalized minimal residual (GMRES) algorithm accelerated with a parallel multilevel fast multipole algorithm. We show that the number of iterations is halved by transforming the original matrix equations into normal equations. This way, memory required for the GMRES algorithm is reduced by more than 50%, which is significant when the problem size is large.Item Unknown Iterative solution of dielectric waveguide problems via schur complement preconditioners(IEEE, 2010-07) Malas, Tahir; Gürel, LeventSurface integral-equation methods accelerated with the multilevel fast multipole algorithm provide suitable mechanisms for the solution of dielectric problems. In particular, recently developed formulations increase the stability of the resulting matrix equations, hence they are more suitable for iterative solutions [1]. Among those formulations, we consider the combined tangential formulation (CTF), which produces more accurate results, and the electric and magnetic current combined-field integral equation (JMCFIE), which produces better-conditioned matrix systems than other formulations [1, 2]. ©2010 IEEE.Item Unknown MLFMA solutions of transmission problems Involving realistic metamaterial walls(IEEE, 2007-08) Ergül, Özgür; Ünal, Alper; Gürel, LeventWe present the solution of multilayer metamaterial (MM) structures containing large numbers of unit cells, such as split-ring resonators. Integral-equation formulations of scattering problems are solved iteratively by employing a parallel implementation of the multilevel fast multipole algorithm. Due to ill-conditioned nature of the problems, advanced preconditioning techniques are used to obtain rapid convergence in the iterative solutions. By constructing a sophisticated simulation environment, we accurately and efficiently investigate large and complicated MM structures. © 2007 IEEE.Item Unknown Optimizing CMUT geometry for high power(IEEE, 2010) Yamaner F.Y.; Olcum, Selim; Bozkurt, A.; Köymen, Hayrettin; Atalar, AbdullahCapacitive micromachined ultrasonic transducers (CMUTs) have demonstratedvarious advantages over piezoelectric transducers. However, current CMUT designsproduce low output pressures with high harmonic distortions. Optimizing thetransducer parameters requires an iterative solution and is too time consumingusing finite element (FEM) modelling tools. In this work, we present a method ofdesigning high output pressure CMUTs with relatively low distortion. We analyzethe behavior of a membrane under high voltage continuous wave operation using anonlinear electrical circuit model. The radiation impedance of an array ofCMUTs is accurately represented using an RLC circuit in the model. The maximummembrane swing without collapse is targeted in the transmit mode. Using SPICEsimulation of the parametric circuit model, we design the CMUT cell withoptimized parameters such as the membrane radius (a), thickness (tm),insulator thickness (ti) and gap height (tg). The modelalso predicts the amount of second harmonic at the output. To verify theaccuracy of the results, we built a FEM model with the same CMUT parameters. Thedesign starts by choosing ti for the given input voltage level.First, a is selected for the maximum radiation resistance of the array at theoperating frequency. Second, tm is found for the resonance at theinput frequency. Third, tg is chosen for the maximum membrane swing.Under this condition, a frequency shift in the resonant frequency occurs. Secondand third steps are repeated until convergence. This method results in a CMUTarray with a high output power and with low distortion. © 2010 IEEE.Item Unknown Parallel preconditioners for solutions of dense linear systems with tens of millions of unknowns(2007-11) Malas, Tahir; Ergül, Özgür; Gürel, LeventWe propose novel parallel preconditioning schemes for the iterative solution of integral equation methods. In particular, we try to improve convergence rate of the ill-conditioned linear systems formulated by the electric-field integral equation, which is the only integral-equation formulation for targets having open surfaces. For moderate-size problems, iterative solution of the near-field system enables much faster convergence compared to the widely used sparse approximate inverse preconditioner. For larger systems, we propose an approximation strategy to the multilevel fast multipole algorithm (MLFMA) to be used as a preconditioner. Our numerical experiments reveal that this scheme significantly outperforms other preconditioners. With the combined effort of effective preconditioners and an efficiently parallelized MLFMA, we are able to solve targets with tens of millions of unknowns, which are the largest problems ever reported in computational electromagnetics. ©2007 IEEE.Item Unknown Preconditioning iterative MLFMA solutions of integral equations(IEEE, 2010) Gürel, Levent; Malas, Tahir; Ergül, ÖzgürThe multilevel fast multipole algorithm (MLFMA) is a powerful method that enables iterative solutions of electromagnetics problems with low complexity. Iterative solvers, however, are not robust for three-dimensional complex reallife problems unless suitable preconditioners are used. In this paper, we present our efforts to devise effective preconditioners for MLFMA solutions of difficult electromagnetics problems involving both conductors and dielectrics. © 2010 IEEE.Item Unknown Solution of large-scale scattering problems with the multilevel fast multipole algorithm parallelized on distributed-memory architectures(IEEE, 2007) Ergül, Özgür; Gürel, LeventWe present the solution of large-scale scattering problems involving three-dimensional closed conducting objects with arbitrary shapes. With an efficient parallelization of the multilevel fast multipole algorithm on relatively inexpensive computational platforms using distributed-memory architectures, we perform the iterative solution of integral-equation formulations that are discretized with tens of millions of unknowns. In addition to canonical problems, we also present the solution of real-life problems involving complicated targets with large dimensions.