Browsing by Subject "Iterative improvement heuristics"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Query-log aware replicated declustering(Institute of Electrical and Electronics Engineers, 2013) Turk, A.; Oktay, K. Y.; Aykanat, CevdetData declustering and replication can be used to reduce I/O times related with processing of data intensive queries. Declustering parallelizes the query retrieval process by distributing the data items requested by queries among several disks. Replication enables alternative disk choices for individual disk items and thus provides better query parallelism options. In general, existing replicated declustering schemes do not consider query log information and try to optimize all possible queries for a specific query type, such as range or spatial queries. In such schemes, it is assumed that two or more copies of all data items are to be generated and scheduling of these copies to disks are discussed. However, in some applications, generation of even two copies of all of the data items is not feasible, since data items tend to have very large sizes. In this work, we assume that there is a given limit on disk capacities and thus on replication amounts. We utilize existing query-log information to propose a selective replicated declustering scheme, in which we select the data items to be replicated and decide on their scheduling onto disks while respecting disk capacities. We propose and implement an iterative improvement algorithm to obtain a two-way replicated declustering and use this algorithm in a recursive framework to generate a multiway replicated declustering. Then we improve the obtained multiway replicated declustering by efficient refinement heuristics. Experiments conducted on realistic data sets show that the proposed scheme yields better performance results compared to existing replicated declustering schemes. © 1990-2012 IEEE.Item Open Access Replicated hypergraph partitioning(2010) Selvitopi, Reha OğuzHypergraph partitioning is recently used in distributed information retrieval (IR) and spatial databases to correctly capture the communication and disk access costs. In the hypergraph models for these areas, the quality of the partitions obtained using hypergraph partitioning can be crucial for the objective of the targeted problem. Replication is a widely used terminology to address different performance issues in distributed IR and database systems. The main motivation behind replication is to improve the performance of the targeted issue at the cost of using more space. In this work, we focus on replicated hypergraph partitioning schemes that improve the quality of hypergraph partitioning by vertex replication. To this end, we propose a replicated partitioning scheme where replication and partitioning are performed in conjunction. Our approach utilizes successful multilevel and recursive bipartitioning methodologies for hypergraph partitioning. The replication is achieved in the uncoarsening phase of the multilevel methodology by extending the efficient Fiduccia-Mattheyses (FM) iterative improvement heuristic. We call this extended heuristic replicated FM (rFM). The proposed rFM heuristic supports move, replication and unreplication operations on the vertices by introducing new algorithms and vertex states. We show rFM has the same complexity as FM and integrate the proposed replication scheme into the multilevel hypergraph partitioning tool PaToH. We test the proposed replication scheme on realistic datasets and obtain promising results.