Replicated hypergraph partitioning

Date

2010

Editor(s)

Advisor

Aykanat, Cevdet

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
4
views
12
downloads

Series

Abstract

Hypergraph partitioning is recently used in distributed information retrieval (IR) and spatial databases to correctly capture the communication and disk access costs. In the hypergraph models for these areas, the quality of the partitions obtained using hypergraph partitioning can be crucial for the objective of the targeted problem. Replication is a widely used terminology to address different performance issues in distributed IR and database systems. The main motivation behind replication is to improve the performance of the targeted issue at the cost of using more space. In this work, we focus on replicated hypergraph partitioning schemes that improve the quality of hypergraph partitioning by vertex replication. To this end, we propose a replicated partitioning scheme where replication and partitioning are performed in conjunction. Our approach utilizes successful multilevel and recursive bipartitioning methodologies for hypergraph partitioning. The replication is achieved in the uncoarsening phase of the multilevel methodology by extending the efficient Fiduccia-Mattheyses (FM) iterative improvement heuristic. We call this extended heuristic replicated FM (rFM). The proposed rFM heuristic supports move, replication and unreplication operations on the vertices by introducing new algorithms and vertex states. We show rFM has the same complexity as FM and integrate the proposed replication scheme into the multilevel hypergraph partitioning tool PaToH. We test the proposed replication scheme on realistic datasets and obtain promising results.

Course

Other identifiers

Book Title

Degree Discipline

Computer Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)