Browsing by Subject "Iterative deconvolution algorithms"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Projections onto the epigraph set of the filtered variation function based deconvolution algorithm(IEEE, 2017) Tofighi, M.; Çetin, A. EnisA new deconvolution algorithm based on orthogonal projections onto the hyperplanes and the epigraph set of a convex cost function is presented. In this algorithm, the convex sets corresponding to the cost function are defined by increasing the dimension of the minimization problem by one. The Filtered Variation (FV) function is used as the convex cost function in this algorithm. Since the FV cost function is a convex function in RN, then the corresponding epigraph set is also a convex set in the lifted set in RN+1. At each step of the iterative deconvolution algorithm, starting with an arbitrary initial estimate in RN+1, first the projections onto the hyperplanes are performed to obtain the first deconvolution estimate. Then an orthogonal projection is performed onto the epigraph set of the FV cost function, in order to regularize and denoise the deconvolution estimate, in a sequential manner. The algorithm converges to the deblurred image.Item Open Access Range resolution improvement in passive bistatic radars using nested FM channels and least squares approach(SPIE, 2015) Arslan, Musa Tunç; Tofighi, Muhammad; Sevimli, Rasim Akın; Çetin, A. EnisOne of the main disadvantages of using commercial broadcasts in a Passive Bistatic Radar (PBR) system is the range resolution. Using multiple broadcast channels to improve the radar performance is offered as a solution to this problem. However, it suffers from detection performance due to the side-lobes that matched filter creates for using multiple channels. In this article, we introduce a deconvolution algorithm to suppress the side-lobes. The two-dimensional matched filter output of a PBR is further analyzed as a deconvolution problem. The deconvolution algorithm is based on making successive projections onto the hyperplanes representing the time delay of a target. Resulting iterative deconvolution algorithm is globally convergent because all constraint sets are closed and convex. Simulation results in an FM based PBR system are presented.