BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Ionic interaction and intertwined polymer network"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Tuning the degree of oxidation and electron delocalization of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) with solid-electrolyte
    (Elsevier, 2017-10) Vempati, Sesha; Ertaş, Yelda; Çelebioğlu, Aslı; Uyar, Tamer
    We report on the effects of ionic interaction on the electronic structure of PEDOT:PSS where the oxidation state of PEDOT is an import aspect for various applications. Additional ionic interactions are introduced and controlled by varying the fraction of poly(ethylene oxide) (PEO). These interactions are balanced against the inherent cohesive forces within each of the polymers constituting intertwined networks. Raman spectra evidenced a peak-shift as high as ∼14 cm−1 for C[dbnd]C vibrational region which suggested increasing degree of oxidation of PEDOT for higher PEO fractions. Changes to the single and bipolaronic absorption bands support the results from the Raman spectra. For highest PEO fraction neutral-PEDOT and lowered bipolaron density is attributed to localization of PEDOT chains within PEO matrix. Interestingly, for higher PEO fractions the electronic density of states (DOS) of HOMO and core-levels (S2p, C1s and O1s) suggested increased degree of oxidation and electron localization on PEDOT. Near and below (∼12 eV) Fermi level, contribution to the O2p and C2p atomic orbitals depicted significantly different DOS. Also we note energetic shift for O2s/C2s and bonding σCC atomic and molecular DOS, respectively. The correlation between some surface and bulk-related properties suggests the uniformity of the blend material which might be vital for the application in electrochemical devices.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback