BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Interface roughness scattering"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Magnetic-field dependence of low-temperature mobility in quasi-one-dimensional electron systems
    (Institute of Physics Publishing Ltd., 1994) Tanatar, Bilal; Constantinou, N. C.
    We study the mobility of a quasi-one-dimensional (Q1D) electron system in the presence of an axial magnetic field at low temperatures. We consider the mobility limits for remote-impurity scattering, homogeneous-background scattering, interface-roughness scattering, and alloy-disorder scattering mechanisms. For a system in which all carriers are in the lowest subband, the electron-impurity interaction is modelled for the above cases, and analytic expressions are derived. Calculations appropriate for a GaAs Q1D structure are presented for typical wire radius R, electron density N, impurity density Ni, and applied magnetic field B.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Mobility limiting scattering mechanisms in nitride-based two-dimensional heterostructures with the InGaN channel
    (IOP Publishing, 2010-03-16) Gökden, S.; Tülek, R.; Teke, A.; Leach, J. H.; Fan, Q.; Xie, J.; Özgür, Ü.; Morkoç, H.; Lisesivdin, S. B.; Özbay, Ekmel
    The scattering mechanisms limiting the carrier mobility in AlInN/AlN/InGaN/GaN two-dimensional electron gas (2DEG) heterostructures were investigated and compared with devices without InGaN channel. Although it is expected that InGaN will lead to relatively higher electron mobilities than GaN, Hall mobilities were measured to be much lower for samples with InGaN channels as compared to GaN. To investigate these observations the major scattering processes including acoustic and optical phonons, ionized impurity, interface roughness, dislocation and alloy disorder were applied to the temperature-dependent mobility data. It was found that scattering due mainly to interface roughness limits the electron mobility at low and intermediate temperatures for samples having InGaN channels. The room temperature electron mobilities which were determined by a combination of both optical phonon and interface roughness scattering were measured between 630 and 910 cm2 (V s)-1 with corresponding sheet carrier densities of 2.3-1.3 × 1013 cm-2. On the other hand, electron mobilities were mainly limited by intrinsic scattering processes such as acoustic and optical phonons over the whole temperature range for Al0.82In 0.18N/AlN/GaN and Al0.3Ga0.7N/AlN/GaN heterostructures where the room temperature electron mobilities were found to be 1630 and 1573 cm2 (V s)-1 with corresponding sheet carrier densities of 1.3 and 1.1 × 1013 cm-2, respectively. By these analyses, it could be concluded that the interfaces of HEMT structures with the InGaN channel layer are not as good as that of a conventional GaN channel where either AlGaN or AlInN barriers are used. It could also be pointed out that as the In content in the AlInN barrier layer increases the interface becomes smoother resulted in higher electron mobility.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Scattering analysis of two-dimensional electrons in AlGaN/GaN with bulk related parameters extracted by simple parallel conduction extraction method
    (American Institute of Physics, 2010-07-15) Lisesivdin, S. B.; Yildiz, A.; Balkan, N.; Kasap, M.; Ozcelik, S.; Özbay, Ekmel
    We carried out the temperature (22-350 K) and magnetic field (0.05 and 1.4 T) dependent Hall mobility and carrier density measurements on Al 0.22Ga0.78N/GaN heterostructures with AlN interlayer grown by metal-organic chemical-vapor deposition. Hall data is analyzed with a simple parallel conduction extraction method and temperature dependent mobility and carrier densities of the bulk and two-dimensional (2D) electrons are extracted successfully. The results for the bulk carriers are discussed using a theoretical model that includes the most important scattering mechanisms that contribute to the mobility. In order to investigate the mobility of two-dimensional electron gas, we used a theoretical model that takes into account the polar optical phonon scattering, acoustic phonon scattering, background impurity scattering, and interface roughness scattering in 2D. In these calculations, the values are used for the deformation potential and ionized impurity density values were obtained from the bulk scattering analysis. Therefore, the number of fitting parameters was reduced from four to two. © 2010 American Institute of Physics.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback