Browsing by Subject "Integrated microfluidic devices"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Simulation of an integrated microfluidic device for bioparticle wash, separation and concentration(American Society of Mechanical Engineers (ASME), 2013) Çetin, Barbaros; Büyükkoçak, S.; Zeinali, Soheila; Özer, B.Washing, separation and concentration of bioparticles are key operations for many biological and chemical analyses. In this study, the simulation of an integrated microfluidic device is studied. The proposed device has the capability to wash the bioparticles (transferring the bioparticles from one buffer solution to another), to separate the particles based on their dielectric properties and to concentrate the bioparticles. Washing and concentration of bioparticles are performed by acoustophoresis and the separation is performed by dielectrophoresis. For simulating the flow within the microchannel, a computational fluid dynamics model using COMSOL Multiphysics software is implemented. In order to simulate the particle trajectories under ultrasonic and electric field, point-particle assumption is chosen using MATLAB software. To account for the size variation of the bioparticles, particles with normal size distributions are used in-side the microchannel. The effect of the key design parameters such as flow rate, applied voltage etc. on the performance of the device is discussed. Copyright © 2013 by ASME.Item Open Access Spiral microfluidics device for continuous flow PCR(ASME, 2013) Salemmilani, Reza; Çetin, BarbarosPolymerase-chain-Reaction (PCR) is a thermal cycling (repeated heating and cooling of PCR solution) process for DNA amplification. PCR is the key ingredient in many biomedical applications. One key feature for the success of the PCR is to control the temperature of the solution precisely at the desired temperature levels required for the PCR in a cyclic manner. Microfluidics offers a great advantage over conventional techniques since minute amounts of PCR solution can be heated and cooled with a high rate in a controlled manner. In this study, a microfluidic platform has been proposed for continuous-flow PCR. The microfluidic device consists of a spiral channel on a glass wafer with integrated chromium microheaters. Sub-micron thick microheaters are deposited beneath the micro-channels to facilitate localized heating. The microfluidic device is modeled using COMSOL MultiphysicsR . The fabrication procedure of the device is also discussed and future research directions are addressed. With its compact design, the proposed system can easily be coupled with an integrated microfluidic device to be used in biomedical applications. Copyright © 2013 by ASME.