Browsing by Subject "Input pre-processing"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Fractional fourier transform pre-processing for neural networks and its application to object recognition(Elsevier, 2002-01) Barshan, Billur; Ayrulu, BirselThis study investigates fractional Fourier transform pre-processing of input signals to neural networks. The fractional Fourier transform is a generalization of the ordinary Fourier transform with an order parameter a. Judicious choice of this parameter can lead to overall improvement of the neural network performance. As an illustrative example, we consider recognition and position estimation of different types of objects based on their sonar returns. Raw amplitude and time-of-flight patterns acquired from a real sonar system are processed, demonstrating reduced error in both recognition and position estimation of objects. (C) 2002 Elsevier Science Ltd. All rights reserved.Item Open Access Transform pre-processing for neural networks for object recognition and localization with sonar(SPIE, 2003) Barshan, Billur; Ayrulu, BirselWe investigate the pre-processing of sonar signals prior to using neural networks for robust differentiation of commonly encountered features in indoor environments. Amplitude and time-of-flight measurement patterns acquired from a real sonar system are pre-processed using various techniques including wavelet transforms, Fourier and fractional Fourier transforms, and Kohonen's self-organizing feature map. Modular and non-modular neural network structures trained with the back-propagation and generating-shrinking algorithms are used to incorporate learning in the identification of parameter relations for target primitives. Networks trained with the generating-shrinking algorithm demonstrate better generalization and interpolation capability and faster convergence rate. The use of neural networks trained with the back-propagation algorithm, usually with fractional Fourier transform or wavelet pre-processing results in near perfect differentiation, around 85% correct range estimation and around 95% correct azimuth estimation, which would be satisfactory in a wide range of applications. Neural networks can differentiate more targets, employing only a single sensor node, with a higher correct differentiation percentage than achieved with previously reported methods employing multiple sensor nodes. The success of the neural network approach shows that the sonar signals do contain sufficient information to differentiate a considerable number of target types, but the previously reported methods are unable to resolve this identifying information. This work can find application in areas where recognition of patterns hidden in sonar signals is required. Some examples are system control based on acoustic signal detection and identification, map building, navigation, obstacle avoidance, and target-tracking applications for mobile robots and other intelligent systems.