Browsing by Subject "Infrared sensor"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Extraction of target features using infrared intensity signals(IEEE, 2005-09) Aytaç, Tayfun; Barshan, BillurWe propose the use of angular intensity signals obtained with low-cost infrared (IR) sensors and present an algorithm to simultaneously extract the geometry and surface properties of commonly encountered features or targets in indoor environments. The method is verified experimentally with planes, 90° corners, and 90° edges covered with aluminum, white cloth, and Styrofoam packaging material. An average correct classification rate of 80% of both geometry and surface over all target types is achieved and targets are localized within absolute range and azimuth errors of 1.5 cm and 1.1°, respectively. Taken separately, the geometry and surface type of targets can be correctly classified with rates of 99% and 81%, respectively, which shows that the geometrical properties of the targets are more distinctive than their surface properties, and surface determination is the limiting factor. The method demonstrated shows that simple IR sensors, when coupled with appropriate signal processing, can be used to extract substantially more information than such devices are commonly employed for.Item Open Access Rule-based target differentiation and position estimation based on infrared intensity measurements(SPIE, 2003) Aytaç, T.; Barshan, B.This study investigates the use of low-cost infrared sensors in the differentiation and localization of target primitives commonly encountered in indoor environments, such as planes, corners, edges, and cylinders. The intensity readings from such sensors are highly dependent on target location and properties in a way that cannot be represented in a simple manner, making the differentiation and localization difficult. We propose the use of angular intensity scans from two infrared sensors and present a rule-based algorithm to process them. The method can achieve position-invariant target differentiation without relying on the absolute return signal intensities of the infrared sensors. The method is verified experimentally. Planes, 90-deg corners, 90-deg edges, and cylinders are differentiated with correct rates of 90%, 100%, 82.5%, and 92.5%, respectively. Targets are localized with average absolute range and azimuth errors of 0.55 cm and 1.03 deg. The demonstration shows that simple infrared sensors, when coupled with appropriate processing, can be used to extract a significantly greater amount of information than they are commonly employed for.Item Open Access Statistical pattern recognition techniques for target differentiation using infrared sensor(IEEE, 2006) Aytaç, Tayfun; Yüzbaşıoğlu, Ç.; Barshan, BillurThis study compares the performances of various statistical pattern recognition techniques for the differentiation of commonly encountered features in indoor environments, possibly with different surface properties, using simple infrared (IR) sensors. The intensity measurements obtained from such sensors are highly dependent on the location, geometry, and surface properties of the reflecting feature in a way that cannot be represented by a simple analytical relationship, therefore complicating the differentiation process. We construct feature vectors based on the parameters of angular IR intensity scans from different targets to determine their geometry type. Mixture of normals classifier with three components correctly differentiates three types of geometries with different surface properties, resulting in the best performance (100%) in geometry differentiation. The results indicate that the geometrical properties of the targets are more distinctive than their surface properties, and surface recognition is the limiting factor in differentiation. The results demonstrate that simple IR sensors, when coupled with appropriate processing and recognition techniques, can be used to extract substantially more information than such devices are commonly employed for.