Rule-based target differentiation and position estimation based on infrared intensity measurements

Date

2003

Authors

AytaƧ, T.
Barshan, B.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Optical Engineering

Print ISSN

0091-3286

Electronic ISSN

Publisher

SPIE

Volume

42

Issue

6

Pages

1766 - 1771

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

This study investigates the use of low-cost infrared sensors in the differentiation and localization of target primitives commonly encountered in indoor environments, such as planes, corners, edges, and cylinders. The intensity readings from such sensors are highly dependent on target location and properties in a way that cannot be represented in a simple manner, making the differentiation and localization difficult. We propose the use of angular intensity scans from two infrared sensors and present a rule-based algorithm to process them. The method can achieve position-invariant target differentiation without relying on the absolute return signal intensities of the infrared sensors. The method is verified experimentally. Planes, 90-deg corners, 90-deg edges, and cylinders are differentiated with correct rates of 90%, 100%, 82.5%, and 92.5%, respectively. Targets are localized with average absolute range and azimuth errors of 0.55 cm and 1.03 deg. The demonstration shows that simple infrared sensors, when coupled with appropriate processing, can be used to extract a significantly greater amount of information than they are commonly employed for.

Course

Other identifiers

Book Title

Citation