BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Infra-red cameras"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Bulanıklık tespiti birikimli olasılığına dayalı kızılötesi kamera otomatik odaklanması
    (IEEE, 2014-04) Çakır, Serdar; Çetin, A. Enis
    Nesne iz ölçümü ve analizinde kızılötesi (KÖ) kameralar önemli bir rol oynamaktadır. Özellikle araştırma ve askeri amaçlı kullanılan bilimsel KÖ kameralarda odaklama el ile yapılmakta ve bu durum alınan ölçümün hassasiyet ve güvenilirliğini azaltmaktadır. Otomatik kamera odaklama algoritmaları imgeden çeşitli öznitelikler çıkararak en iyi odak noktası için bir ölçüt belirlemeye çalışmaktadır. Bu çalışmada, imge kalite değerlendirilmesinde kullanılan dayanaksız (referanssız) bir bulanıklık ölçütü bir takım uyarlamalardan geçirilmekte ve uyarlanan bu ölçüt KÖ kamera otomatik odaklanması problemi için önerilmektedir. Gerçekştirilen deneysel çalışmalar önerilen yöntemin KÖ kamera otomatik odaklanması probleminde başarıyla kullanılabileceğini göstermiştir.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Compressive sensing based flame detection in infrared videos
    (IEEE, 2013) Günay, Osman; Çetin, A. Enis
    In this paper, a Compressive Sensing based feature extraction algorithm is proposed for flame detection using infrared cameras. First, bright and moving regions in videos are detected. Then the videos are divided into spatio-temporal blocks and spatial and temporal feature vectors are exctracted from these blocks. Compressive Sensing is used to exctract spatial feature vectors. Compressed measurements are obtained by multiplying the pixels in the block with the sensing matrix. A new method is also developed to generate the sensing matrix. A random vector generated according to standard Gaussian distribution is passed through a wavelet transform and the resulting matrix is used as the sensing matrix. Temporal features are obtained from the vector that is formed from the difference of mean intensity values of the frames in two neighboring blocks. Spatial feature vectors are classified using Adaboost. Temporal feature vectors are classified using hidden Markov models. To reduce the computational cost only moving and bright regions are classified and classification is performed at specified intervals instead of every frame. © 2013 IEEE.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback