Browsing by Subject "InAs"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Electrical performance of InAs/AlSb/GaSb superlattice photodetectors(Academic Press, 2016) Tansel, T.; Hostut M.; Elagoz, S.; Kilic A.; Ergun, Y.; Aydınlı, AtillaTemperature dependence of dark current measurements is an efficient way to verify the quality of an infrared detector. Low dark current density values are needed for high performance detector applications. Identification of dominant current mechanisms in each operating temperature can be used to extract minority carrier lifetimes which are highly important for understanding carrier transport and improving the detector performance. InAs/AlSb/GaSb based T2SL N-structures with AlSb unipolar barriers are designed for low dark current with high resistance and detectivity. Here we present electrical and optical performance of such N-structure photodetectors.Item Open Access N-structure based on InAs/AlSb/GaSb superlattice photodetectors(Academic Press, 2015) Hostut, M.; Alyoruk, M.; Tansel, T.; Kilic, A.; Turan, R.; Aydınlı, Atilla; Ergun, Y.We have studied the theoretical and experimental properties of InAs/AlSb/GaSb based type-II superlattice (T2SL) pin photodetector called N-structure. Electronic properties of the superlattice such as HH-LH splitting energies was investigated using first principles calculations taking into account InSb and AlAs as possible interface transition alloys between AlSb/InAs layers and individual layer thicknesses of GaSb and InAs. T2SL N-structure was optimized to operate as a MWIR detector based on these theoretical approaches tailoring the band gap and HH-LH splitting energies with InSb transition layers between InAs/AlSb interfaces. Experimental results show that AlSb layers in the structure act as carrier blocking barriers reducing the dark current. Dark current density and R0A product at 125 K were obtained as 1.8 × 10-6 A cm-2 and 800ωcm2 at zero bias, respectively. The specific detectivity was measured as 3 × 1012 Jones with cut-off wavelengths of 4.3 μm at 79 K reaching to 2 × 109 Jones and 4.5 μm at 255 K. ©2014 Elsevier Ltd. All rights reserved.