N-structure based on InAs/AlSb/GaSb superlattice photodetectors
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
We have studied the theoretical and experimental properties of InAs/AlSb/GaSb based type-II superlattice (T2SL) pin photodetector called N-structure. Electronic properties of the superlattice such as HH-LH splitting energies was investigated using first principles calculations taking into account InSb and AlAs as possible interface transition alloys between AlSb/InAs layers and individual layer thicknesses of GaSb and InAs. T2SL N-structure was optimized to operate as a MWIR detector based on these theoretical approaches tailoring the band gap and HH-LH splitting energies with InSb transition layers between InAs/AlSb interfaces. Experimental results show that AlSb layers in the structure act as carrier blocking barriers reducing the dark current. Dark current density and R0A product at 125 K were obtained as 1.8 × 10-6 A cm-2 and 800ωcm2 at zero bias, respectively. The specific detectivity was measured as 3 × 1012 Jones with cut-off wavelengths of 4.3 μm at 79 K reaching to 2 × 109 Jones and 4.5 μm at 255 K. ©2014 Elsevier Ltd. All rights reserved.