Browsing by Subject "In situ hybridization"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Characterization of a novel zebrafish (Danio rerio) gene, wdr81, associated with cerebellar ataxia, mental retardation and dysequilibrium syndrome (CAMRQ)(BioMed Central Ltd., 2015) Doldur-Balli, F.; Ozel, M. N.; Gulsuner, S.; Tekinay, A. B.; Ozcelik, T.; Konu, O.; Adams, M. M.Background: WDR81 (WD repeat-containing protein 81) is associated with cerebellar ataxia, mental retardation and disequilibrium syndrome (CAMRQ2, [MIM 610185]). Human and mouse studies suggest that it might be a gene of importance during neurodevelopment. This study aimed at fully characterizing the structure of the wdr81 transcript, detecting the possible transcript variants and revealing its expression profile in zebrafish, a powerful model organism for studying development and disease. Results: As expected in human and mouse orthologous proteins, zebrafish wdr81 is predicted to possess a BEACH (Beige and Chediak-Higashi) domain, a major facilitator superfamily domain and WD40-repeats, which indicates a conserved function in these species. We observed that zebrafish wdr81 encodes one open reading frame while the transcript has one 5' untranslated region (UTR) and the prediction of the 3' UTR was mainly confirmed along with a detected insertion site in the embryo and adult brain. This insertion site was also found in testis, heart, liver, eye, tail and muscle, however, there was no amplicon in kidney, intestine and gills, which might be the result of possible alternative polyadenylation processes among tissues. The 5 and 18 hpf were critical timepoints of development regarding wdr81 expression. Furthermore, the signal of the RNA probe was stronger in the eye and brain at 18 and 48 hpf, then decreased at 72 hpf. Finally, expression of wdr81 was detected in the adult brain and eye tissues, including but not restricted to photoreceptors of the retina, presumptive Purkinje cells and some neurogenic brains regions. Conclusions: Taken together these data emphasize the importance of this gene during neurodevelopment and a possible role for neuronal proliferation. Our data provide a basis for further studies to fully understand the function of wdr81.Item Open Access In situ hybridization as a method to examine gene regulatory activity in vivo(Humana Press Inc., 2023) Datta, Rhea R.; Onal, Pinar; Simoes-Costa, MarcosTranscription factor-enhancer binding events are among the most well-studied protein-DNA interactions, allowing researchers to determine mechanisms of transcriptional activation or repression during development. While large-scale ChIP-sequence datasets, together with computational predictions and chromatin accessibility data, yield information on potential transcription factor binding activities, reporter gene assays provide measurable information on whether these binding activities are functional in particular cell types during development. Here, we present a detailed protocol to examine enhancer activity in Drosophila embryos using cloning, transgenesis, and in situ hybridization.Item Open Access Inter-varietal structural variation in grapevine genomes(Wiley-Blackwell Publishing Ltd., 2016) Cardone, M. F.; D'Addabbo, P.; Alkan C.; Bergamini, C.; Catacchio, C. R.; Anaclerio, F.; Chiatante, G.; Marra, A.; Giannuzzi, G.; Perniola, R.; Ventura M.; Antonacci, D.Grapevine (Vitis vinifera L.) is one of the world's most important crop plants, which is of large economic value for fruit and wine production. There is much interest in identifying genomic variations and their functional effects on inter-varietal, phenotypic differences. Using an approach developed for the analysis of human and mammalian genomes, which combines high-throughput sequencing, array comparative genomic hybridization, fluorescent in�situ hybridization and quantitative PCR, we created an inter-varietal atlas of structural variations and single nucleotide variants (SNVs) for the grapevine genome analyzing four economically and genetically relevant table grapevine varieties. We found 4.8 million SNVs and detected 8% of the grapevine genome to be affected by genomic variations. We identified more than 700 copy number variation (CNV) regions and more than 2000 genes subjected to CNV as potential candidates for phenotypic differences between varietiesItem Open Access The prosurvival IKK-related kinase IKKϵ integrates LPS and IL17A signaling cascades to promote Wnt-dependent tumor development in the intestine(American Association for Cancer Research, 2016-05) Göktuna, S. I.; Shostak, K.; Chau, T.-L.; Heukamp, L.C.; Hennuy, B.; Duong, H.-Q.; Ladang, A.; Close, P.; Klevernic, I.; Olivier, F.; Florin, A.; Ehx, G.; Baron, F.; Vandereyken, M.; Rahmouni, S.; Vereecke, L.; Loo, G. V.; Büttner, R.; Greten, F. R.; Chariot, A.Constitutive Wnt signaling promotes intestinal cell proliferation, but signals from the tumor microenvironment are also required to support cancer development. The role that signaling proteins play to establish a tumor microenvironment has not been extensively studied. Therefore, we assessed the role of the proinflammatory Ikk-related kinase Ikkϵ in Wnt-driven tumor development. We found that Ikkϵ was activated in intestinal tumors forming upon loss of the tumor suppressor Apc. Genetic ablation of Ikkϵ in b-catenin-driven models of intestinal cancer reduced tumor incidence and consequently extended survival. Mechanistically, we attributed the tumor-promoting effects of Ikkϵ to limited TNF-dependent apoptosis in transformed intestinal epithelial cells. In addition, Ikkϵ was also required for lipopolysaccharide (LPS) and IL17A-induced activation of Akt, Mek1/2, Erk1/2, and Msk1. Accordingly, genes encoding proinflammatory cytokines, chemokines, and anti-microbial peptides were downregulated in Ikkϵ-deficient tissues, subsequently affecting the recruitment of tumor-associated macrophages and IL17A synthesis. Further studies revealed that IL17A synergized with commensal bacteria to trigger Ikkϵ phosphorylation in transformed intestinal epithelial cells, establishing a positive feedback loop to support tumor development. Therefore, TNF, LPS, and IL17A-dependent signaling pathways converge on Ikkϵ to promote cell survival and to establish an inflammatory tumor microenvironment in the intestine upon constitutive Wnt activation.