Browsing by Subject "Impurity bands"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Electrical conduction properties of Si δ-doped GaAs grown by MBE(2009) Yildiz, A.; Lisesivdin, S.B.; Altuntas H.; Kasap, M.; Ozcelik, S.The temperature dependent Hall effect and resistivity measurements of Si δ-doped GaAs are performed in a temperature range of 25-300 K. The temperature dependence of carrier concentration shows a characteristic minimum at about 200 K, which indicates a transition from the conduction band conduction to the impurity band conduction. The temperature dependence of the conductivity results are in agreement with terms due to conduction band conduction and localized state hopping conduction in the impurity band. It is found that the transport properties of Si δ-doped GaAs are mainly governed by the dislocation scattering mechanism at high temperatures. On the other hand, the conductivity follows the Mott variable range hopping conduction (VRH) at low temperatures in the studied structures. © 2009 Elsevier B.V. All rights reserved.Item Open Access Hall conductance in graphene with point defects(2013) İslamoǧlu, S.; Oktel, M. Ö.; Gülseren, O.We investigate the Hall conductance of graphene with point defects within the Kubo formalism, which allows us to calculate the Hall conductance without constraining the Fermi energy to lie in a gap. For pure graphene, which we model using a tight-binding Hamiltonian, we recover both the usual and the anomalous integer quantum Hall effects depending on the proximity to the Dirac points. We investigate the effect of point defects on Hall conduction by considering a dilute but regular array of point defects incorporated into the graphene lattice. We extend our calculations to include next nearest neighbor hopping, which breaks the bipartite symmetry of the lattice. We find that impurity atoms which are weakly coupled to the rest of the lattice result in gradual disappearance of the high conductance value plateaus. For such impurities, especially for vacancies which are decoupled from the lattice, strong modification of the Hall conductance occurs near the E = 0 eV line, as impurity states are highly localized. In contrast, if the impurities are strongly coupled, they create additional Hall conductance plateaus at the extremum values of the spectrum, signifying separate impurity bands. Hall conductance values within the original spectrum are not strongly modified.