BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Imperfections"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Microstructural defect properties of InGaN/GaN blue light emitting diode structures
    (Springer US, 2014-06-28) Bas, Y.; Demirel, P.; Akin, N.; Başköse, C.; Özen, Y.; Kınacı, B.; Öztürk, M. K.; Özcelik, S.; Özbay, Ekmel
    In this paper, we study structural and morphological properties of metal-organic chemical vapour deposition-grown InGaN/GaN light emitting diode (LED) structures with different indium (In) content by means of high-resolution X-ray diffraction, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), photoluminescence (PL) and current-voltage characteristic (I-V). We have found out that the tilt and twist angles, lateral and vertical coherence lengths of mosaic blocks, grain size, screw and edge dislocation densities of GaN and InGaN layers, and surface roughness monotonically vary with In content. Mosaic defects obtained due to temperature using reciprocal lattice space map has revealed optimized growth temperature for active InGaN layer of MQW LED. It has been observed in this growth temperature that according to AFM result, LED structure has high crystal dimension, and is rough whereas according to PL and FTIR results, bandgap energy shifted to blue, and energy peak half-width decreased at high values. According to I-V measurements, it was observed that LED reacted against light at optimized temperature. In conclusion, we have seen that InGaN MQW structure's structural, optical and electrical results supported one another.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Modeling and analysis of a MEMS vibrating ring gyroscope subject to imperfections
    (Institute of Electrical and Electronics Engineers, 2022-05-06) Hosseini-Pishrobat, Mehran; Tatar, Erdinç
    We present a new mathematical model for a vibrating ring gyroscope (VRG) in the presence of imperfections, namely, structural defects and material anisotropy. As a novelty, we calculate the mode shapes of the internal suspension structure to enable a more accurate and modular analysis of the VRG’s mass and stiffness distributions. Solving the associated eigenvalue problem shows that imperfections result in the frequency split between the gyroscope’s operating mode shapes, rotating their orientation with respect to the nominal drive and sense axes. We then use perturbation analysis to solve the VRG’s equations of motion and analyze the quadrature error that arises from frequency/damping mismatch between the mode shapes. We use our model to detail the various effects of the etching-related undercuts, structural uncertainties, and Young’s modulus anisotropy–in the form of suitable space-dependent functions–on the mode shapes and the quadrature error for the first time. The results reveal that rings are robust against imperfection, while the straight beams used in the suspension system are most likely responsible for the frequency split and quadrature error. For example, 50 nm (0.5%) width variation in a beam that connects the VRG’s suspension to an anchored internal structure leads to 4700°/s quadrature error. To validate our modeling, using the experimental data from a fabricated 59 kHz VRG, we provide rigorous, comparative simulations against the finite element method (FEM).

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback