Browsing by Subject "Immunoglobulin enhancer binding protein"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Implicit motif distribution based hybrid computational kernel for sequence classification(Oxford University Press, 2005) Atalay, V.; Cetin Atalay, R.Motivation: We designed a general computational kernel for classification problems that require specific motif extraction and search from sequences. Instead of searching for explicit motifs, our approach finds the distribution of implicit motifs and uses as a feature for classification. Implicit motif distribution approach may be used as modus operandi for bioinformatics problems that require specific motif extraction and search, which is otherwise computationally prohibitive. Results: A system named P2SL that infer protein subcellular targeting was developed through this computational kernel. Targeting-signal was modeled by the distribution of subsequence occurrences (implicit motifs) using self-organizing maps. The boundaries among the classes were then determined with a set of support vector machines. P2SL hybrid computational system achieved ∼81% of prediction accuracy rate over ER targeted, cytosolic, mitochondrial and nuclear protein localization classes. P2SL additionally offers the distribution potential of proteins among localization classes, which is particularly important for proteins, shuttle between nucleus and cytosol. © The Author 2004. Published by Oxford University Press. All rights reserved.Item Open Access Interplay between 15-lipoxygenase-1 and metastasisassociated antigen 1 in the metastatic potential of colorectal cancer(Wiley-Blackwell Publishing Ltd., 2016) Tunçer, S.; Çağatay, T. S.; Keşküş, A. G.; Çolakoğlu, M.; Konu, Ö.; Banerjee S.Objectives: Metastasis-associated antigen 1 (MTA1) is implicated in metastasis while 15-lipoxygenase-1 (15-LOX-1) reduces cell motility, when re-expressed in colorectal cancer (CRC). We aimed to understand any potential interplay between MTA1 and 15-LOX-1 in CRC metastasis. Materials and methods: ALOX15 and MTA1 expression in tumour and normal samples were analysed from TCGA RNA-seq data, microarray data sets and a human CRC cDNA array. Western blots, chromatin immunoprecipitation (ChIP), luciferase assays and electrophoretic mobility shift assays (EMSA) were carried out in HT-29 and LoVo cells re-expressing 15-LOX-1 to determine NF- κB activity at the MTA1 promoter. Functional assays in cells ectopically expressing either 15-LOX-1, MTA-1 or both, were carried out to determine adhesion and cell motility. Results: Significantly higher expression of MTA1 was observed in tumours compared to normal tissues; MTA1 overexpression resulted in reduced adhesion in CRC cell lines. Re-expression of 15-LOX-1 in the CRC cell lines reduced expression of endogenous MTA1, corroborated by negative correlation between the two genes in two independent human CRC microarray data sets, with greater significance in specific subsets of patients. DNA binding and transcriptional activity of NF-κB at the MTA1 promoter was significantly lower in cells re-expressing 15-LOX-1. Functionally, the same cells had reduced motility, which was rescued when they overexpressed MTA1, and further corroborated by expressions of E-cadherin and vimentin. Conclusions: Expression of MTA1 and 15-LOX-1 negatively correlated in specific subsets of CRC. Mechanistically, this is at least in part through reduced recruitment of NF-κB to the MTA1 promoter.Item Open Access miR-200c: a versatile watchdog in cancer progression, EMT, and drug resistance(Springer Verlag, 2016-06) Mutlu, M.; Raza, U.; Saatci, Ö.; Eyüpoğlu, E.; Yurdusev, E.; Şahin, Ö.MicroRNAs (miRNAs) are 20–22-nucleotide small endogenous non-coding RNAs which regulate gene expression at post-transcriptional level. In the last two decades, identification of almost 2600 miRNAs in human and their potential to be modulated opened a new avenue to target almost all hallmarks of cancer. miRNAs have been classified as tumor suppressors or oncogenes depending on the phenotype they induce, the targets they modulate, and the tissue where they function. miR-200c, an illustrious tumor suppressor, is one of the highly studied miRNAs in terms of development, stemness, proliferation, epithelial-mesenchymal transition (EMT), therapy resistance, and metastasis. In this review, we first focus on the regulation of miR-200c expression and its role in regulating EMT in a ZEB1/E-cadherin axis-dependent and ZEB1/E-cadherin axis-independent manner. We then describe the role of miR-200c in therapy resistance in terms of multidrug resistance, chemoresistance, targeted therapy resistance, and radiotherapy resistance in various cancer types. We highlight the importance of miR-200c at the intersection of EMT and chemoresistance. Furthermore, we show how miR-200c coordinates several important signaling cascades such as TGF-β signaling, PI3K/Akt signaling, Notch signaling, VEGF signaling, and NF-κB signaling. Finally, we discuss miR-200c as a potential prognostic/diagnostic biomarker in several diseases, but mainly focusing on cancer and its potential application in future therapeutics.Item Open Access Opposing roles of the aldo-keto reductases AKR1B1 and AKR1B10 in colorectal cancer(Springer Netherlands, 2017-09) Taskoparan, B.; Seza, E. G.; Demirkol, S.; Tuncer, S.; Stefek, M.; Gure, A. O.; Banerjee, S.Purpose: Aldo-keto reductases (including AKR1B1 and AKR1B10) constitute a family of oxidoreductases that have been implicated in the pathophysiology of diabetes and cancer, including colorectal cancer (CRC). Available data indicate that, despite their similarities in structure and enzymatic functions, their roles in CRC may be divergent. Here, we aimed to determine the expression and functional implications of AKR1B1 and AKR1B10 in CRC. Methods: AKR1B1 and AKR1B10 gene expression levels were analyzed using publicly available microarray data and ex vivo CRC-derived cDNA samples. Gene Set Enrichment Analysis (GSEA), The Cancer Genome Atlas (TCGA) RNA-seq data and The Cancer Proteome Atlas (TCPA) proteome data were analyzed to determine the effect of high and low AKR1B1 and AKR1B10 expression levels in CRC patients. Proliferation, cell cycle progression, cellular motility, adhesion and inflammation were determined in CRC-derived cell lines in which these genes were either exogenously overexpressed or silenced. Results: We found that the expression of AKR1B1 was unaltered, whereas that of AKR1B10 was decreased in primary CRCs. GSEA revealed that, while high AKR1B1 expression was associated with increased cell cycle progression, cellular motility and inflammation, high AKR1B10 expression was associated with a weak inflammatory phenotype. Functional studies carried out in CRC-derived cell lines confirmed these data. Microarray data analysis indicated that high expression levels of AKR1B1 and AKR1B10 were significantly associated with shorter and longer disease-free survival rates, respectively. A combined gene expression signature of AKR1B10 (low) and AKR1B1 (high) showed a better prognostic stratification of CRC patients independent of confounding factors. Conclusions: Despite their similarities, the expression levels and functions of AKR1B1 and AKR1B10 are highly divergent in CRC, and they may have prognostic implications.Item Open Access The prosurvival IKK-related kinase IKKϵ integrates LPS and IL17A signaling cascades to promote Wnt-dependent tumor development in the intestine(American Association for Cancer Research, 2016-05) Göktuna, S. I.; Shostak, K.; Chau, T.-L.; Heukamp, L.C.; Hennuy, B.; Duong, H.-Q.; Ladang, A.; Close, P.; Klevernic, I.; Olivier, F.; Florin, A.; Ehx, G.; Baron, F.; Vandereyken, M.; Rahmouni, S.; Vereecke, L.; Loo, G. V.; Büttner, R.; Greten, F. R.; Chariot, A.Constitutive Wnt signaling promotes intestinal cell proliferation, but signals from the tumor microenvironment are also required to support cancer development. The role that signaling proteins play to establish a tumor microenvironment has not been extensively studied. Therefore, we assessed the role of the proinflammatory Ikk-related kinase Ikkϵ in Wnt-driven tumor development. We found that Ikkϵ was activated in intestinal tumors forming upon loss of the tumor suppressor Apc. Genetic ablation of Ikkϵ in b-catenin-driven models of intestinal cancer reduced tumor incidence and consequently extended survival. Mechanistically, we attributed the tumor-promoting effects of Ikkϵ to limited TNF-dependent apoptosis in transformed intestinal epithelial cells. In addition, Ikkϵ was also required for lipopolysaccharide (LPS) and IL17A-induced activation of Akt, Mek1/2, Erk1/2, and Msk1. Accordingly, genes encoding proinflammatory cytokines, chemokines, and anti-microbial peptides were downregulated in Ikkϵ-deficient tissues, subsequently affecting the recruitment of tumor-associated macrophages and IL17A synthesis. Further studies revealed that IL17A synergized with commensal bacteria to trigger Ikkϵ phosphorylation in transformed intestinal epithelial cells, establishing a positive feedback loop to support tumor development. Therefore, TNF, LPS, and IL17A-dependent signaling pathways converge on Ikkϵ to promote cell survival and to establish an inflammatory tumor microenvironment in the intestine upon constitutive Wnt activation.