Implicit motif distribution based hybrid computational kernel for sequence classification

Date

2005

Authors

Atalay, V.
Cetin Atalay, R.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
4
views
14
downloads

Citation Stats

Series

Abstract

Motivation: We designed a general computational kernel for classification problems that require specific motif extraction and search from sequences. Instead of searching for explicit motifs, our approach finds the distribution of implicit motifs and uses as a feature for classification. Implicit motif distribution approach may be used as modus operandi for bioinformatics problems that require specific motif extraction and search, which is otherwise computationally prohibitive. Results: A system named P2SL that infer protein subcellular targeting was developed through this computational kernel. Targeting-signal was modeled by the distribution of subsequence occurrences (implicit motifs) using self-organizing maps. The boundaries among the classes were then determined with a set of support vector machines. P2SL hybrid computational system achieved ∼81% of prediction accuracy rate over ER targeted, cytosolic, mitochondrial and nuclear protein localization classes. P2SL additionally offers the distribution potential of proteins among localization classes, which is particularly important for proteins, shuttle between nucleus and cytosol. © The Author 2004. Published by Oxford University Press. All rights reserved.

Source Title

Bioinformatics

Publisher

Oxford University Press

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English