Browsing by Subject "Hippocampus"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access Age-related synapse loss in hippocampal CA3 is not reversed by caloric restriction(Pergamon Press, 2010) Adams, Michelle M.; Donohue, H. S.; Linville, M. C.; Iversen, E. A.; Newton, I. G.; Bechtold, J. K. B.Caloric restriction (CR) is a reduction of total caloric intake without a decrease in micronutrients or a disproportionate reduction of any one dietary component. While CR attenuates age-related cognitive deficits in tasks of hippocampal-dependent memory, the cellular mechanisms by which CR improves this cognitive decline are poorly understood. Previously, we have reported age-related decreases in key synaptic proteins in the CA3 region of the hippocampus that are stabilized by lifelong CR. In the present study, we examined possible age-related changes in the functional microcircuitry of the synapses in the stratum lacunosum-moleculare (SL-M) of the CA3 region of the hippocampus, and whether lifelong CR might prevent these age-related alterations. We used serial electron microscopy to reconstruct and classify SL-M synapses and their postsynaptic spines. We analyzed synapse number and size as well as spine surface area and volume in young (10 months) and old (29 months) ad libitum fed rats and in old rats that were calorically restricted from 4 months of age. We limited our analysis to SL-M because previous work demonstrated age-related decreases in synaptophysin confined to this specific layer and region of the hippocampus. The results revealed an age-related decrease in macular axo-spinous synapses that was not reversed by CR that occurred in the absence of changes in the size of synapses or spines. Thus, the benefits of CR for CA3 function and synaptic plasticity may involve other biological effects including the stabilization of synaptic proteins levels in the face of age-related synapse loss. © 2010 IBRO.Item Open Access Disrupted network topology in patients with stable and progressive mild cognitive impairment and alzheimer's disease(Oxford University Press, 2016) Pereira, J. B.; Mijalkov, M.; Kakaei, E.; Mecocci, P.; Vellas, B.; Tsolaki, M.; Kłoszewska, I.; Soininen, H.; Spenger, C.; Lovestone, S.; Simmons, A.; Wahlund, L.-O.; Volpe, G.; Westman, E.Recent findings suggest that Alzheimer's disease (AD) is a disconnection syndrome characterized by abnormalities in large-scale networks. However, the alterations that occur in network topology during the prodromal stages of AD, particularly in patients with stable mild cognitive impairment (MCI) and those that show a slow or faster progression to dementia, are still poorly understood. In this study, we used graph theory to assess the organization of structural MRI networks in stable MCI (sMCI) subjects, late MCI converters (lMCIc), early MCI converters (eMCIc), and AD patients from 2 large multicenter cohorts: ADNI and AddNeuroMed. Our findings showed an abnormal global network organization in all patient groups, as reflected by an increased path length, reduced transitivity, and increased modularity compared with controls. In addition, lMCIc, eMCIc, and AD patients showed a decreased path length and mean clustering compared with the sMCI group. At the local level, there were nodal clustering decreases mostly in AD patients, while the nodal closeness centrality detected abnormalities across all patient groups, showing overlapping changes in the hippocampi and amygdala and nonoverlapping changes in parietal, entorhinal, and orbitofrontal regions. These findings suggest that the prodromal and clinical stages of AD are associated with an abnormal network topology.Item Open Access Effect of patient sex on white matter alterations in unilateral medial temporal lobe epilepsy with hippocampal sclerosis assessed by diffusion tensor imaging(2013) Oguz, K.K.; Tezer I.; Sanverdi, E.; Has, A.C.; Bilginer, B.; Dolgun, A.; Saygi, S.BACKGROUND AND PURPOSE: Studies shows ictal behavior and symptoms are affected by patient sex in temporal lobe epilepsy. The purpose of our study was to determine whether alterations in the WM as assessed by DTI display different patterns in male and female patients with unilateral HS. MATERIALS AND METHODS: Patients with unilateral HS were categorized as women with right HS ( n=12), men with right HS ( n=10), women with left HS ( n=12), and men with left HS ( n=10). DTI of the brain along 64 noncollinear directions was obtained from 44 patients and 37 sex-matched control participants. We used TBSS to analyze whole-brain WM. Regions with significant changes of FA and MD, and their mean FA, MD, total number of significant voxels, and asymmetry indices were determined for each group. RESULTS: All groups showed bilateral and extensive reductions of FA and elevated MD in the WM, more prominent ipsilateral to the affected hippocampus. The total number of voxels with decreased FA in patients compared with that of control participants was higher in women with right HS (24,727 vs 5,459) and in men with left HS (27,332 vs 14,013) than in their counterparts. Changes in MD associated with right HS were more extensive in both men and women (right vs left HS, women: 16,926 vs 5,458; men: 5,389 vs 4,764) than in those with left HS. In patients with right HS, the ipsilateral cingulum, uncinate fasciculus, internal and external capsules, and right acoustic radiation were involved extensively in women. CONCLUSIONS: Women and men showed different patterns in extent of WM alterations associated with HS.Item Open Access Simplification of the data-driven hippocampal CA1 microcircuit(2021-03) Kurban, Mustafa KeremBiophysically realistic neuron models provide emergent neural and circuit be-haviors due to their data-driven approach and high sensitivity in representing the ionic currents. These models comprise multiple compartments for representing dendrites, which allows getting high accuracy during dendrosomatic and somato-dendritic signals. An average pyramidal cell model having around 170 compart-ments and 1000 synapses makes up a significant cost in computational time and memory load. When a high number of cells are considered, an ordinary com-puter becomes unable to simulate such circuits. With the recent developments in neuron simplification algorithms, the voltage deflection timings at the soma can be captured by preserving the transfer impedance of excitatory & inhibitory synapses to soma. It has been shown that the simplified cortical neuron models can get a high spike-synchrony with up to 250x faster simulation time. Despite its performance at single cell level, the application of neuron reduce algorithm to circuit level analysis has not been shown yet. This work extends the use cases of the algorithm by applying it to various hippocampal morpholo-gies and shows its performance in both single cell and network level simulations. The validations include total neuron activation rates by morphology, inter-spike intervals of the circuits, raster plots and average firing rates throughout the cir-cuit in experiments including somatic current injection, miniature post synaptic potentials, external innervation from Schaffer Collaterals and LFP simulations. We show the successfully replicated emergent behaviors and the limitations of the simplification algorithm on neurons firing in broad frequency regimes and further present optimization techniques for those that perform sub-optimally with the simplification alone.Item Open Access Stability of local brain levels of insulin-like growth factor-I in two well-characterized models of decreased plasma IGF-I(Taylor & Francis, 2009) Adams, Michelle M.; Forbes, M; Linville, M.; Riddle, D.; Sonntag, W.; Brunso-Bechtold, J.Insulin-like growth factor-I (IGF-I), a functionally important neurotrophic factor, impacts tissues throughout the body including the central nervous system. In addition to the significant proportion of IGF-I that is synthesized in the liver and released into the plasma, IGF-I is expressed locally in tissues. The present study investigated the relationship between plasma and local brain levels of IGF-I in two well-characterized models of decreased IGF-I. The first is an adult-onset growth hormone deficiency (AOGHD) model, and the second is a caloric restriction (CR) model. In the first cohort of animals from both models, the hippocampus was removed from the brain immediately following decapitation, and in the second cohort, the animals were perfused transcardially with phosphate buffered saline to remove cerebral blood prior to harvesting the hippocampus. Our results demonstrated that although the plasma IGF-I levels were decreased in the CR and AOGHD rats compared to controls, the hippocampal IGF-I levels did not differ among the groups. These data suggest that local brain IGF-I levels are regulated in a different manner than plasma IGF-I levels.Item Open Access Strain-and region-specific gene expression profiles in mouse brain in response to chronic nicotine treatment(Wiley-Blackwell Publishing, 2008) Wang, J.; Gutala, R.; Hwang, Y. Y.; Kim J. -M.; Konu, O.; Ma, J. Z.; Li, M. D.A pathway-focused complementary DNA microarray and gene ontology analysis were used to investigate gene expression profiles in the amygdala, hippocampus, nucleus accumbens, prefrontal cortex (PFC) and ventral tegmental area of C3H/HeJ and C57BL/6J mice receiving nicotine in drinking water (100 μg/ml in 2% saccharin for 2 weeks). A balanced experimental design and rigorous statistical analysis have led to the identification of 3.5-22.1% and 4.1-14.3% of the 638 sequence-verified genes as significantly modulated in the aforementioned brain regions of the C3H/HeJ and C57BL/6J strains, respectively. Comparisons of differential expression among brain tissues showed that only a small number of genes were altered in multiple brain regions, suggesting presence of a brain region-specific transcriptional response to nicotine. Subsequent principal component analysis and Expression Analysis Systematic Explorer analysis showed significant enrichment of biological processes both in C3H/HeJ and C57BL/6J mice, i.e. cell cycle/proliferation, organogenesis and transmission of nerve impulse. Finally, we verified the observed changes in expression using real-time reverse transcriptase polymerase chain reaction for six representative genes in the PFC region, providing an independent replication of our microarray results. Together, this report represents the first comprehensive gene expression profiling investigation of the changes caused by nicotine in brain tissues of the two mouse strains known to exhibit differential behavioral and physiological responses to nicotine.Item Open Access Toxicity of internalized laser generated pure silver nanoparticles to the isolated rat hippocampus cells(SAGE, 2017-02) Kursungoz, C.; Taş, S. T.; Sargon, M. F.; Sara, Y.; Ortaç, B.Silver nanoparticles (AgNPs) are the most commonly used nanoparticles (NPs) in medicine, industry and cosmetics. They are generally considered as biocompatible. However, contradictory reports on their biosafety render them difficult to accept as 'safe'. In this study, we evaluated the neurotoxicity of direct AgNP treatment in rat hippocampal slices. We produced pure uncoated AgNPs by a pulsed laser ablation method. NP characterization was performed by Ultraviolet (UV) visible spectrophotometer, scanning electron microscope, transmission electron microscope (TEM) and energy-dispersive X-ray spectroscopy. Rat hippocampal slices were treated with AgNPs for an hour. AgNP exposure of hippocampal tissue resulted in a significant decrease in cell survival in a dose-dependent manner. Our TEM results showed that AgNPs were distributed in the extracellular matrix and were taken into the cytoplasm of the neurons. Moreover, we found that only larger AgNPs were taken into the neurons via phagocytosis. This study showed that the pure AgNPs produced by laser ablation are toxic to the neural tissue. We also found that neurons internalized only the large NPs by phagocytosis which seems to be the major mechanism in AgNP neurotoxicity.