Browsing by Subject "Higher diffraction order"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Asymmetric transmission in prisms using structures and materials with isotropic-type dispersion(Optical Society of America, 2015) Gundogdu, F. T.; Serebryannikov, A. E.; Cakmak, A. O.; Özbay, EkmelIt is demonstrated that strong asymmetry in transmission can be obtained at the Gaussian beam illumination for a single prism based on a photonic crystal (PhC) with isotropic-type dispersion, as well as for its analog made of a homogeneous material. Asymmetric transmission can be realized with the aid of refraction at a proper orientation of the interfaces and wedges of the prism, whereas neither contribution of higher diffraction orders nor anisotropic-type dispersion is required. Furthermore, incidence toward a prism wedge can be used for one of two opposite directions in order to obtain asymmetry. Thus, asymmetric transmission is a general property of the prism configurations, which can be obtained by using simple geometries and quite conventional materials. The obtained results show that strong asymmetry can be achieved in PhC prisms with (nearly) circular shape of equifrequency dispersion contours, in both cases associated with the index of refraction 0 < n < 1 and n > 1. For the comparison purposes, results are also presented for solid uniform nonmagnetic prisms made of a material with the same value of n. It is shown in zero-loss approximation that the PhC prism and the ultralow-index material prism ( 0 < n < 1) can replace each other in some cases without affecting the scenario of asymmetric transmission. Moreover, the PhC prism and the solid dielectric prism can show the same scenario at n > 1. Possible contributions of scattering on the individual rods and diffraction on the wedge to the resulting mechanism are discussed. Analogs of unidirectional splitting and unidirectional deflection regimes, which are known from the studies of PhC gratings, are obtained in PhC prisms and solid uniform prisms, i.e. without higher diffraction orders. ©2015 Optical Society of America.Item Open Access Integral imaging using phase-only LCoS spatial light modulators as Fresnel lenslet arrays(Optical Society of Amercia, 2011-10-27) Ÿontem, A. O.; Onural, L.We present a digital integral imaging system. A Fresnel lenslet array pattern is written on a phase-only LCoS spatial light modulator device (SLM) to replace the regular analog lenslet array in a conventional integral imaging system. We theoretically analyze the capture part of the proposed system based on Fresnel wave propagation formulation. Because of pixelation and quantization of the lenslet array pattern, higher diffraction orders and multiple focal points emerge. Because of the multiple focal planes introduced by the discrete lenslets, multiple image planes are observed. The use of discrete lenslet arrays also causes some other artifacts on the recorded elemental images. The results reduce to those available in the literature when the effects introduced by the discrete nature of the lenslets are omitted. We performed simulations of the capture part. It is possible to obtain the elemental images with an acceptable visual quality. We also constructed an optical integral imaging system with both capture and display parts using the proposed discrete Fresnel lenslet array written on a SLM. Optical results when self-luminous objects, such as an LED array, are used indicate that the proposed system yields satisfactory results.Item Open Access Two types of single-beam deflection and asymmetric transmission in photonic structures without interface corrugations(Optical Society of America, 2016) Serebryannikov, A. E.; Colak, E.; Magath, T.; Özbay, EkmelWe study single-beam deflection and asymmetry in transmission, two aspects of the same phenomenon that appear in the topologically simple, nonsymmetric, photonic crystal (PhC)-based structures without corrugations at the interfaces. Strong diffractions enabling efficient blazing, i.e., redistribution of the incident wave energy in favor of the desired higher diffraction order(s), can be achieved owing to the defect-like layer(s) embedded in a regular slab of PhC. The main features, together with the peculiarities of the two basic transmission types and relevant coupling and deflection scenarios, are discussed, for one of which a part of the PhC works in the evanescent-wave regime. Performances are suggested, in which efficient single-beam deflection and asymmetry in transmission can be obtained even when the irregular layer is deeply embedded. More than 97% of the incident wave energy can be converted into a single deflected beam that is associated with the first negative diffraction order, even though the entire structure is nonsymmetric and the diffractive element is located at some distance from the incidence interface.