Browsing by Subject "Heuristic programming"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access Analytical loading models in flexible manufacturing systems(Elsevier, 1993) Kırkavak, N.; Dinçer, C.It would be difficult to efficiently implement a manufacturing system without solving its design and operational problems. Based on this framework, a system configuration and tooling problem is modeled. The model turns out to be a large mixed integer linear program, so that some alternative optimal seeking and heuristic techniques are used to solve the model for constructing a flow line structured Flexible Manufacturing System. As a result, it may be possible to construct flexible, efficient, simple and easily controllable manufacturing systems. © 1993.Item Open Access A beam search algorithm to optimize robustness under random machine breakdowns and processing time variability(Institute of Industrial Engineers, 2007) Gören, S.; Sabuncuoğlu, İhsanThe vast majority of the machine scheduling research assumes complete information about the scheduling problem and a static environment in which scheduling systems operate. In practice, however, scheduling systems are subject to considerable uncertainty in dynamic environments. The ability to cope with the uncertainty in scheduling process is becoming increasingly important in today's highly dynamic and competitive business environments. In the literature, two approaches have appeared as the effective way: reactive and proactive scheduling. The objective in reactive scheduling is to revise schedules as necessary, while proactive scheduling attempts to incorporate future disruptions when generating schedules. In this paper we take a proactive scheduling approach to solve a machine scheduling problem with two sources of uncertainty: processing time variability and machine breakdowns. We define two robustness measures and develop a heuristic based on beam search methodology to optimize them. The computational results show that the proposed algorithms perform significantly better than a number of heuristics available in the literature.Item Open Access Exact and heuristic approaches based on noninterfering transmissions for joint gateway selection, time slot allocation, routing and power control for wireless mesh networks(Elsevier, 2017) Gokbayrak, K.; Yıldırım, E. A.Wireless mesh networks (WMNs) provide cost-effective alternatives for extending wireless communication over larger geographical areas. In this paper, given a WMN with its nodes and possible wireless links, we consider the problem of gateway node selection for connecting the network to the Internet along with operational problems such as routing, wireless transmission capacity allocation, and transmission power control for efficient use of wired and wireless resources. Under the assumption that each node of the WMN has a fixed traffic rate, our goal is to allocate capacities to the nodes in proportion to their traffic rates so as to maximize the minimum capacity-to-demand ratio, referred to as the service level. We adopt a time division multiple access (TDMA) scheme, in which a time frame on the same frequency channel is divided into several time slots and each node can transmit in one or more time slots. We propose two mixed integer linear programming formulations. The first formulation, which is based on individual transmissions in each time slot, is a straightforward extension of a previous formulation developed by the authors for a related problem under a different set of assumptions. The alternative formulation, on the other hand, is based on sets of noninterfering wireless transmissions. In contrast with the first formulation, the size of the alternative formulation is independent of the number of time slots in a frame. We identify simple necessary and sufficient conditions for simultaneous transmissions on different links of the network in the same time slot without any significant interference. Our characterization, as a byproduct, prescribes a power level for each of the transmitting nodes. Motivated by this characterization, we propose a simple scheme to enumerate all sets of noninterfering transmissions, which is used as an input for the alternative formulation. We also introduce a set of valid inequalities for both formulations. For large instances, we propose a three-stage heuristic approach. In the first stage, we solve a partial relaxation of our alternative optimization model and determine the gateway locations. This stage also provides an upper bound on the optimal service level. In the second stage, a routing tree is constructed for each gateway node computed in the first stage. Finally, in the third stage, the alternative optimization model is solved by fixing the resulting gateway locations and the routing trees from the previous two stages. For even larger networks, we propose a heuristic approach for solving the partial relaxation in the first stage using a neighborhood search on gateway locations. Our computational results demonstrate the promising performance of our exact and heuristic approaches and the valid inequalitiesItem Open Access The general behavior of pull production systems: the allocation problems(Elsevier, 1999) Kırkavak, N.; Dinçer, C.The design of tandem production systems has been well studied in the literature with the primary focus being on how to improve their e ciency. Considering the large costs associated, a slight improvement in e ciency can lead to very signi®cant savings over its life. Division of work and allocation of bu er capacities between workstations are two critical design problems that have attracted the attention of many researchers. In this study, ®rst an understanding into how the system works is to be provided. Except for the integration of two allocation problems, the basic model utilized here is essentially the same as the previous studies. Theoretical results that characterize the dynamics of these systems may also provide some heuristic support in the analysis of large-scale pull production systems. Ó 1999 Elsevier Science B.V. All rights reserved.Item Open Access Iterative-improvement-based heuristics for adaptive scheduling of tasks sharing files on heterogeneous master-slave environments(Institute of Electrical and Electronics Engineers, 2006) Kaya, K.; Aykanat, CevdetThe scheduling of independent but file-sharing tasks on heterogeneous master-slave platforms has recently found important applications in Grid environments. The scheduling heuristics recently proposed for this problem are all constructive in nature and based on a common greedy criterion which depends on the momentary completion time values of the tasks. We show that this greedy decision criterion has shortcomings in exploiting the file-sharing interaction among tasks since completion time values are inadequate to extract the global view of this interaction. We propose a three-phase scheduling approach which involves initial task assignment, refinement, and execution ordering phases. For the refinement phase, we model the target application as a hypergraph and, with an elegant hypergraph-partitioning-like formulation, we propose using iterative-improvement-based heuristics for refining the task assignments according to two novel objective functions. Unlike the turnaround time, which is the actual schedule cost, the smoothness of proposed objective functions enables the use of iterative-improvement-based heuristics successfully since their effectiveness and efficiency depend on the smoothness of the objective function. Experimental results on a wide range of synthetically generated heterogeneous master-slave frameworks show that the proposed three-phase scheduling approach performs much better than the greedy constructive approach. © 2006 IEEE.Item Open Access One-dimensional partitioning for heterogeneous systems: theory and practice(Academic Press, 2008-11) Pınar, A.; Tabak, E. K.; Aykanat, CevdetWe study the problem of one-dimensional partitioning of nonuniform workload arrays, with optimal load balancing for heterogeneous systems. We look at two cases: chain-on-chain partitioning, where the order of the processors is specified, and chain partitioning, where processor permutation is allowed. We present polynomial time algorithms to solve the chain-on-chain partitioning problem optimally, while we prove that the chain partitioning problem is NP-complete. Our empirical studies show that our proposed exact algorithms produce substantially better results than heuristics, while solution times remain comparable. © 2008 Elsevier Inc. All rights reserved.Item Open Access Solving the hazmat transport network design problem(Pergamon Press, 2008) Erkut, E.; Gzara, F.In this paper, we consider the problem of network design for hazardous material transportation where the government designates a network, and the carriers choose the routes on the network. We model the problem as a bilevel network flow formulation and analyze the bilevel design problem by comparing it to three other decision scenarios. The bilevel model is difficult to solve and may be ill-posed. We propose a heuristic solution method that always finds a stable solution. The heuristic exploits the network flow structure at both levels to overcome the difficulty and instability of the bilevel integer programming model. Testing on real data shows that the linearization of the bilevel model fails to find stable solutions and that the heuristic finds lower risk networks in less time. Further testing on random instances shows that the heuristically designed networks achieve significant risk reduction over single-level models. The risk is very close to the least risk possible. However, this reduction in risk comes with a significant increase in cost. We extend the bilevel model to account for the cost/risk trade-off by including cost in the first-level objective. The biobjective-bilevel model is a rich decision-support tool that allows for the generation of many good solutions to the design problem.