Iterative-improvement-based heuristics for adaptive scheduling of tasks sharing files on heterogeneous master-slave environments

Date

2006

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

IEEE Transactions on Parallel and Distributed Systems

Print ISSN

1045-9219

Electronic ISSN

Publisher

Institute of Electrical and Electronics Engineers

Volume

17

Issue

8

Pages

883 - 896

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

The scheduling of independent but file-sharing tasks on heterogeneous master-slave platforms has recently found important applications in Grid environments. The scheduling heuristics recently proposed for this problem are all constructive in nature and based on a common greedy criterion which depends on the momentary completion time values of the tasks. We show that this greedy decision criterion has shortcomings in exploiting the file-sharing interaction among tasks since completion time values are inadequate to extract the global view of this interaction. We propose a three-phase scheduling approach which involves initial task assignment, refinement, and execution ordering phases. For the refinement phase, we model the target application as a hypergraph and, with an elegant hypergraph-partitioning-like formulation, we propose using iterative-improvement-based heuristics for refining the task assignments according to two novel objective functions. Unlike the turnaround time, which is the actual schedule cost, the smoothness of proposed objective functions enables the use of iterative-improvement-based heuristics successfully since their effectiveness and efficiency depend on the smoothness of the objective function. Experimental results on a wide range of synthetically generated heterogeneous master-slave frameworks show that the proposed three-phase scheduling approach performs much better than the greedy constructive approach. © 2006 IEEE.

Course

Other identifiers

Book Title

Citation